## Septic System Management Plan Agreement

| Site Address: 3198 450 <sup>TH</sup> ST Freeport MN Parcel # 100519000  System Designer: Darrell Bacon Company Name: Big Stone Excavating License # 4018  Management Tasks—Listed below are the operating and management activities necessary to ensure the long-term performance of your septic system. The list includes responsibilities of the system owner and those of the system designer and or other septic system professionals. Certain management activities will require a licensed septic syst professional.  Service Intervals—The system designer and Morrison County are providing recommended Service Intervals for you septic system.  State Code requires "septic tank assessment" every 36 months  Morrison County code requires "septic tank assessment" every 36 months  System Designer recommends "septic tank assessment" every 24 months  If the assessment identifies a need for pumping and cleaning of your tanks it must be done by a licenser professional.  Seasonal Tasks—or several times per year:  Leaks. Check (listen, look) for leaks in toilets and dripping faucets. Repair leaks promptly.  Surfacing sewage. Regularly check for wet or spongy soil around your treatment area. If surfacing sewage of strong odors are not corrected by pumping the tank or fixing broken caps, call your service professional.  Jutreated sewage may make humans and animals sick.  Alarms. If there is an Alarm, the signal indicates there is a problem; contact your maintainer or a licensed s system professional any time the alarm signals.  Lint filters. If there is an lint filter, check for buildup and clean when necessary.  Effluent screen. If there is an effluent screen, inspect and clean it twice a year or per manufacturer recommendations  Annual Tasks—or scheduled maintenance tasks:  Inspection Caps. Check to make sure they are properly capped. Replace caps that are damaged.  Pumps and controls. Check to make sure they pump and controls are operating correctly and inspect wiring corrosion and function.  Event counter or water meter. Monitor the average daily w | Property Owner:_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Joseph Fuchs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Phone:                                                                                                          |                                                                       | Date:                                                                  | 8/29/21                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------|
| Management Tasks—Listed below are the operating and management activities necessary to ensure the long-term performance of your septic system. The list includes responsibilities of the system owner and those of the system designer and or other septic system professionals. Certain management activities will require a licensed septic syst professional.  Service Intervals—The system designer and Morrison County are providing recommended Service Intervals for you septic system.  State Code requires "septic tank assessment" every 36 months  Morrison County code requires "septic tank assessment" every 36 months  System Designer recommends "septic tank assessment" every 36 months  If the assessment identifies a need for pumping and cleaning of your tanks it must be done by a licenser professional.  Seasonal Tasks—or several times per year:  Laaks. Check (listen, look) for leaks in toilets and dripping faucets. Repair leaks promptly.  Surfacing sewage. Regularly check for wet or spongy soil around your treatment area. If surfacing sewage strong odors are not corrected by pumping the tank or fixing broken caps, call your service professional.  Untreaded sewage may make humans and animals sick.  Alarms. If there is an Alarm, the signal indicates there is a problem; contact your maintainer or a licensed s system professional any time the alarm signals.  Lint filters. If there is a lint filter, check for buildup and clean when necessary.  Effluent screen. If there is an effluent screen, inspect and clean it twice a year or per manufacturer recommendations  Annual Tasks—or scheduled maintenance tasks:  Inspection Caps. Check to make sure they are properly capped. Replace caps that are damaged.  Pumps and controls. Check to make sure the pump and controls are operating correctly and inspect wiring corrosion and function.  Event counter or water meter. Monitor the average daily water use (if applicable).                                                                                                                                       | Site Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3198 450 <sup>TH</sup> ST Freeport MN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Parcel #                                                                                                        | 100519000                                                             |                                                                        |                                                      |
| performance of your septic system. The list includes responsibilities of the system owner and those of the system designer and or other septic system professionals. Certain management activities will require a licensed septic syst professional.  Service Intervals—The system designer and Morrison County are providing recommended Service Intervals for you septic system.  State Code requires "septic tank assessment" every 36 months  Morrison County code requires "septic tank assessment" every 36 months  System Designer recommends "septic tank assessment" every 24 months  If the assessment identifies a need for pumping and cleaning of your tanks it must be done by a licenser professional.  Leaks. Check (listen, look) for leaks in toilets and dripping faucets. Repair leaks promptly.  Surfacing sewage. Regularly check for wet or spongy soil around your treatment area. If surfacing sewage of strong odors are not corrected by pumping the tank or fixing broken caps, call your service professional.  Untreated sewage may make humans and animals sick.  Alarms. If there is an Alarm, the signal indicates there is a problem; contact your maintainer or a licensed s system professional any time the alarm signals.  Lint filters. If there is a lint filter, check for buildup and clean when necessary.  Effluent screen. If there is an effluent screen, inspect and clean it twice a year or per manufacturer recommendations  Annual Tasks—or scheduled maintenance tasks:  Inspection Caps. Check to make sure they are properly capped. Replace caps that are damaged.  Pumps and controls. Check to make sure the pump and controls are operating correctly and inspect wiring corrosion and function.  Event counter or water meter. Monitor the average daily water use (if applicable).                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Name: Big Ston                                                                                                  | e Excavating                                                          | License # <u>401</u>                                                   | -<br>18                                              |
| <ul> <li>State Code requires "septic tank assessment" every 36 months</li> <li>Morrison County code requires "septic tank assessment" every 36 months</li> <li>System Designer recommends "septic tank assessment" every 24 months</li> <li>If the assessment identifies a need for pumping and cleaning of your tanks it must be done by a licenser professional.</li> <li>Seasonal Tasks—or several times per year:         <ul> <li>Leaks. Check (listen, look) for leaks in toilets and dripping faucets. Repair leaks promptly.</li> <li>Surfacing sewage. Regularly check for wet or spongy soil around your treatment area. If surfacing sewage of strong odors are not corrected by pumping the tank or fixing broken caps, call your service professional.</li> <li>Untreated sewage may make humans and animals sick.</li> <li>Alarms. If there is an Alarm, the signal indicates there is a problem; contact your maintainer or a licensed s system professional any time the alarm signals.</li> <li>Lint filters. If there is a lint filter, check for buildup and clean when necessary.</li> <li>Effluent screen. If there is an effluent screen, inspect and clean it twice a year or per manufacturer recommendations</li> </ul> </li> <li>Annual Tasks—or scheduled maintenance tasks:         <ul> <li>Inspection Caps. Check to make sure they are properly capped. Replace caps that are damaged.</li> <li>Pumps and controls. Check to make sure the pump and controls are operating correctly and inspect wiring corrosion and function.</li> <li>Event counter or water meter. Monitor the average daily water use (if applicable).</li> <li>Septic tank integrity. Scheduling of pumping and cleaning of tanks at the recommended interval is very important.</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                             | performance of designer and of the contract of | of your septic system. The list include                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es responsibilitie                                                                                              | s of the syste                                                        | m owner and th                                                         | nose of the system                                   |
| <ul> <li>Morrison County code requires "septic tank assessment" every 36 months</li> <li>System Designer recommends "septic tank assessment" every 24 months</li> <li>If the assessment identifies a need for pumping and cleaning of your tanks it must be done by a licensed professional.</li> <li>Seasonal Tasks—or several times per year:         <ul> <li>Leaks. Check (listen, look) for leaks in toilets and dripping faucets. Repair leaks promptly.</li> <li>Surfacing sewage. Regularly check for wet or spongy soil around your treatment area. If surfacing sewage of strong odors are not corrected by pumping the tank or fixing broken caps, call your service professional.</li> <li>Untreated sewage may make humans and animals sick.</li> <li>Alarms. If there is an Alarm, the signal indicates there is a problem; contact your maintainer or a licensed s system professional any time the alarm signals.</li> <li>Lint filters. If there is a lint filter, check for buildup and clean when necessary.</li> <li>Effluent screen. If there is an effluent screen, inspect and clean it twice a year or per manufacturer recommendations</li> </ul> </li> <li>Annual Tasks—or scheduled maintenance tasks:         <ul> <li>Inspection Caps. Check to make sure they are properly capped. Replace caps that are damaged.</li> <li>Pumps and controls. Check to make sure they are properly capped. Replace caps that are damaged.</li> <li>Pumps and controls. Check to make sure they are properly capped. Replace caps that are damaged.</li> <li>Pumps and controls. Check to make sure they are properly capped. Replace caps that are damaged.</li> <li>Pumps and controls. Check to make sure they are properly capped. Replace caps that are damaged.</li> <li>Septic tank integrity. Scheduling of pumping and cleaning of tanks at the recommended interval is very important.</li> </ul> </li> <!--</td--><td></td><td></td><td>son County are p</td><td>providing reco</td><td>ommended Serv</td><td>rice Intervals for your</td></ul>                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | son County are p                                                                                                | providing reco                                                        | ommended Serv                                                          | rice Intervals for your                              |
| professional.  Seasonal Tasks—or several times per year:  Leaks. Check (listen, look) for leaks in toilets and dripping faucets. Repair leaks promptly.  Surfacing sewage. Regularly check for wet or spongy soil around your treatment area. If surfacing sewage of strong odors are not corrected by pumping the tank or fixing broken caps, call your service professional.  Untreated sewage may make humans and animals sick.  Alarms. If there is an Alarm, the signal indicates there is a problem; contact your maintainer or a licensed susystem professional any time the alarm signals.  Lint filters. If there is a lint filter, check for buildup and clean when necessary.  Effluent screen. If there is an effluent screen, inspect and clean it twice a year or per manufacturer recommendations  Annual Tasks—or scheduled maintenance tasks:  Inspection Caps. Check to make sure they are properly capped. Replace caps that are damaged.  Pumps and controls. Check to make sure the pump and controls are operating correctly and inspect wiring corrosion and function.  Event counter or water meter. Monitor the average daily water use (if applicable).  Septic tank integrity. Scheduling of pumping and cleaning of tanks at the recommended interval is very important.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul><li>Morris</li><li>Systen</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | son County code requires "septic tan<br>n Designer recommends "septic tank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ik assessment" e<br>k assessment" ev                                                                            | every 36 mont<br>very <b>24</b> mon                                   | ths                                                                    | be done by a licensed                                |
| <ul> <li>✓ Leaks. Check (listen, look) for leaks in toilets and dripping faucets. Repair leaks promptly.</li> <li>✓ Surfacing sewage. Regularly check for wet or spongy soil around your treatment area. If surfacing sewage of strong odors are not corrected by pumping the tank or fixing broken caps, call your service professional.</li> <li>➢ Untreated sewage may make humans and animals sick.</li> <li>✓ Alarms. If there is an Alarm, the signal indicates there is a problem; contact your maintainer or a licensed substance system professional any time the alarm signals.</li> <li>✓ Lint filters. If there is a lint filter, check for buildup and clean when necessary.</li> <li>✓ Effluent screen. If there is an effluent screen, inspect and clean it twice a year or per manufacturer recommendations</li> <li>Annual Tasks—or scheduled maintenance tasks:</li> <li>✓ Inspection Caps. Check to make sure they are properly capped. Replace caps that are damaged.</li> <li>✓ Pumps and controls. Check to make sure the pump and controls are operating correctly and inspect wiring corrosion and function.</li> <li>✓ Event counter or water meter. Monitor the average daily water use (if applicable).</li> <li>✓ Septic tank integrity. Scheduling of pumping and cleaning of tanks at the recommended interval is very important.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ofessional.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | p 6                                                                                                             | 8 ,                                                                   |                                                                        |                                                      |
| <ul> <li>✓ Inspection Caps. Check to make sure they are properly capped. Replace caps that are damaged.</li> <li>✓ Pumps and controls. Check to make sure the pump and controls are operating correctly and inspect wiring corrosion and function.</li> <li>✓ Event counter or water meter. Monitor the average daily water use (if applicable).</li> <li>✓ Septic tank integrity. Scheduling of pumping and cleaning of tanks at the recommended interval is very important.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ✓ Leaks. ✓ Surfac strong ➢ Ur ✓ Alarm syster ✓ Lint f ✓ Efflue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Check (listen, look) for leaks in toile<br>ing sewage. Regularly check for wet<br>odors are not corrected by pumping<br>ntreated sewage may make humans<br>is. If there is an Alarm, the signal ind<br>m professional any time the alarm signal<br>ilters. If there is a lint filter, check for<br>ent screen. If there is an effluent screen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or spongy soil ag<br>the tank or fixi<br>sand animals sid<br>licates there is a<br>gnals.<br>or buildup and clo | round your tr<br>ng broken cap<br>ck.<br>problem; cor<br>ean when ned | reatment area. I<br>ps, call your serv<br>ntact your maint<br>cessary. | If surfacing sewage or vice professional.            |
| tank components are watertight and in good operating condition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ✓ Inspect ✓ Pumps corros ✓ Event ✓ Septic import ✓ Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ction Caps. Check to make sure they s and controls. Check to make sure to ion and function.  counter or water meter. Monitor the tank integrity. Scheduling of pumpitant.  its maintenance must be conducted to the conducted to th | the pump and co<br>ne average daily<br>ng and cleaning<br>through the mai                                       | water use (if a of tanks at the                                       | erating correctly applicable).<br>se recommende                        | y and inspect wiring for d interval is very          |
| "I understand it is task manager's responsibility (property owner or contracted licensed maintainer) to properly operate and maintain the sewage treatment system on this property, utilizing this Management Plan. If requirements of this Management P are not met, I (a management professional) will promptly notify Morrison County Planning & Zoning and take necessary correct actions. If I (property owner) have a new system, I agree to adequately protect the reserve area for future use as a soil treatment system."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | maintain the sev<br>are not met, I (a<br>actions. If I (pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | wage treatment system on this property<br>n management professional) will prompt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r, utilizing this Ma<br>ly notify Morrison                                                                      | nagement Plan<br>County Planni                                        | n. If requirements<br>ng & Zoning and                                  | of this Management Plan<br>take necessary corrective |
| Property Owner Signature: Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                                       | Date:                                                                  |                                                      |
| Designer Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Designer Signati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                       | Date: <u>9-12</u> -                                                    | -21                                                  |

\_\_\_\_\_<sub>Date:</sub> 10/15/2021

Morrison County P&Z Signature: Jeremy Bartkowicz



## Preliminary Evaluation Worksheet



| 1. Contact Information v 04.01.2020                                                                                                        |      |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|--|--|--|--|--|
| Property Owner/Client: JOSEPH & BARBARA ANN FUCHS Date Completed: 8/29/20                                                                  | 21   |  |  |  |  |  |  |  |  |  |  |
| Site Address: 3200 450th street freeport MN 56331 Project ID:                                                                              |      |  |  |  |  |  |  |  |  |  |  |
| Email: Phone: 32029070                                                                                                                     |      |  |  |  |  |  |  |  |  |  |  |
| Mailing Address:                                                                                                                           |      |  |  |  |  |  |  |  |  |  |  |
| Legal Description:                                                                                                                         |      |  |  |  |  |  |  |  |  |  |  |
| Parcel ID: 100519000 SEC: 28 TWP: 127 RNG: 031                                                                                             |      |  |  |  |  |  |  |  |  |  |  |
| 2. Flow and General System Information                                                                                                     |      |  |  |  |  |  |  |  |  |  |  |
| A. Client-Provided Information  Project Type: New Construction Replacement Expansion Repair  Project Use: Residential Other Establishment: |      |  |  |  |  |  |  |  |  |  |  |
| Residential use: # Bedrooms: 4 Dwelling Sq.ft.: Unfinished Sq. Ft.:                                                                        |      |  |  |  |  |  |  |  |  |  |  |
| # Adults: 2 # Children: 3 # Teenagers:                                                                                                     |      |  |  |  |  |  |  |  |  |  |  |
| In-home business (Y/N): No If yes, describe:                                                                                               |      |  |  |  |  |  |  |  |  |  |  |
| Garbage Disposal/Grinder   ✓ Dishwasher   Hot Tub*     Water-using devices:                                                                |      |  |  |  |  |  |  |  |  |  |  |
| Additional current or future uses:                                                                                                         |      |  |  |  |  |  |  |  |  |  |  |
| Anticipated non-domestic waste:                                                                                                            |      |  |  |  |  |  |  |  |  |  |  |
| The above is complete & accurate:                                                                                                          |      |  |  |  |  |  |  |  |  |  |  |
| Client signature & date  B. Designer-determined flow Information Attach additional information as necessary.                               |      |  |  |  |  |  |  |  |  |  |  |
| Design Flow: 600 GPD Anticipated Waste Type:                                                                                               |      |  |  |  |  |  |  |  |  |  |  |
| BOD: mg/L TSS mg/L Oil & Grease                                                                                                            | mg/L |  |  |  |  |  |  |  |  |  |  |
| 3. Preliminary Site Information                                                                                                            |      |  |  |  |  |  |  |  |  |  |  |
| A. Water Supply Wells                                                                                                                      |      |  |  |  |  |  |  |  |  |  |  |
| # Description Mn. ID# Well Depth Casing Confining STA Depth (ft.) Depth (ft.) Layer Setback Source                                         | :    |  |  |  |  |  |  |  |  |  |  |
|                                                                                                                                            |      |  |  |  |  |  |  |  |  |  |  |
| 3 4                                                                                                                                        | _    |  |  |  |  |  |  |  |  |  |  |
| Additional Well Information:                                                                                                               |      |  |  |  |  |  |  |  |  |  |  |



## Preliminary Evaluation Worksheet



|                                 | Sit                                                                                 | e within 200                                                                                                     | of noncom                                                                                                         | munity transi                                                                        | ent well (Y/N)                              | No                   | Yes, source:      |          |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------|----------------------|-------------------|----------|--|--|--|
|                                 | Site within a drinking water supply management area (Y/N) No Yes, source:           |                                                                                                                  |                                                                                                                   |                                                                                      |                                             |                      |                   |          |  |  |  |
| Site i                          | Site in Well Head Protection inner wellhead management zone (Y/N)  No  Yes, source: |                                                                                                                  |                                                                                                                   |                                                                                      |                                             |                      |                   |          |  |  |  |
| E                               | Buried water supply pipes within 50 ft of proposed system (Y/N)  No                 |                                                                                                                  |                                                                                                                   |                                                                                      |                                             |                      |                   |          |  |  |  |
|                                 | B. Site loca                                                                        | ted in a sho                                                                                                     | reland distr                                                                                                      | ict/area?                                                                            |                                             | No                   | Yes, name:        |          |  |  |  |
|                                 |                                                                                     | Elev                                                                                                             | ation of ord                                                                                                      | linary high wa                                                                       | ater level:                                 | ft                   | Source:           |          |  |  |  |
|                                 | Classifica                                                                          | ation:                                                                                                           |                                                                                                                   |                                                                                      | Tank Setback:                               | f                    | . STA Setbk:      | ft.      |  |  |  |
|                                 | C. Site loca                                                                        | ited in a floo                                                                                                   | odplain?                                                                                                          |                                                                                      |                                             |                      | Yes, Type(s):     |          |  |  |  |
|                                 |                                                                                     | Floodpla                                                                                                         | in designatio                                                                                                     | on/elevation                                                                         | (10 Year):                                  | ft                   | Source:           |          |  |  |  |
|                                 |                                                                                     | Floodplair                                                                                                       | n designation                                                                                                     | n/elevation (                                                                        | 100 Year):                                  | ft                   | Source:           |          |  |  |  |
|                                 | D. Property                                                                         | / Line Id / So                                                                                                   | ource:                                                                                                            | Owner                                                                                | Survey 🗸 Co                                 | unty GIS             | Plat Map 🗌 Other: |          |  |  |  |
|                                 | E. ID distance of relevant setbacks on map: Water Easements Well(s)                 |                                                                                                                  |                                                                                                                   |                                                                                      |                                             |                      |                   |          |  |  |  |
|                                 | Building(s) Property Lines OHWL Other:                                              |                                                                                                                  |                                                                                                                   |                                                                                      |                                             |                      |                   |          |  |  |  |
| 4. Pr                           | eliminary S                                                                         | oil Profile In                                                                                                   | formation F                                                                                                       | rom Web Soi                                                                          | il Survey (attacl                           | n map & descr        | ription)          |          |  |  |  |
|                                 |                                                                                     | Map Units:                                                                                                       | 200B                                                                                                              |                                                                                      |                                             |                      | Slope Range:      | 4 to 8 % |  |  |  |
| List landforms: tress and grass |                                                                                     |                                                                                                                  |                                                                                                                   |                                                                                      |                                             |                      | <u> </u>          |          |  |  |  |
|                                 | List                                                                                | landforms:                                                                                                       | tress and g                                                                                                       | grass                                                                                |                                             |                      |                   |          |  |  |  |
|                                 |                                                                                     | landforms:                                                                                                       | tress and g                                                                                                       | grass                                                                                |                                             |                      |                   |          |  |  |  |
|                                 | Landform                                                                            | L                                                                                                                |                                                                                                                   | grass                                                                                |                                             |                      |                   |          |  |  |  |
|                                 | Landform                                                                            | position(s):<br>t materials:                                                                                     | Shoulder                                                                                                          | grass<br>strictive Feat                                                              | ure:                                        | in Depth             | n to Watertable:  | in       |  |  |  |
|                                 | Landform<br>Paren                                                                   | position(s): t materials:  Depth to                                                                              | Shoulder Till Bedrock/Res                                                                                         |                                                                                      |                                             | <u> </u>             | n to Watertable:  | in       |  |  |  |
|                                 | Landform                                                                            | position(s):  t materials:  Depth to  Septic Tan                                                                 | Shoulder Till Bedrock/Res                                                                                         | strictive Feat                                                                       | ade: Slightly L                             | <u> </u>             | to Watertable:    | in       |  |  |  |
|                                 | Landform<br>Paren<br>Map Unit                                                       | position(s):  t materials:  Depth to  Septic Tan  Septic T.                                                      | Shoulder Till Bedrock/Res k Absorption ank Absorpti                                                               | strictive Feat<br>n Field- At-gra                                                    | ade: Slightly Lund: Moderate                | imited<br>ly Limited | n to Watertable:  | in       |  |  |  |
| 5. Lo                           | Landform<br>Paren<br>Map Unit<br>Ratings                                            | position(s):  t materials:  Depth to  Septic Tan  Septic T.                                                      | Shoulder Till Bedrock/Res k Absorption ank Absorption                                                             | strictive Feat<br>n Field- At-gra<br>ion Field- Mou                                  | ade: Slightly Lund: Moderate                | imited<br>ly Limited | to Watertable:    | in       |  |  |  |
| 5. Lo                           | Landform<br>Paren<br>Map Unit<br>Ratings                                            | position(s):  t materials:  Depth to  Septic Tan  Septic Tan  Septic Tan  Septic Tan                             | Shoulder Till Bedrock/Res k Absorption ank Absorption                                                             | strictive Feat<br>n Field- At-gra<br>ion Field- Mou                                  | ade: Slightly Lund: Moderate                | imited<br>ly Limited | n to Watertable:  | in       |  |  |  |
| 5. Lo                           | Landform<br>Paren<br>Map Unit<br>Ratings                                            | position(s):  t materials:  Depth to  Septic Tan  Septic Tan  Septic Tan  Man                                    | Shoulder Till Bedrock/Res k Absorption ank Absorption ank Absorption                                              | strictive Feat<br>n Field- At-gra<br>ion Field- Mou<br>on Field- Trei                | ade: Slightly Lund: Moderate nch: Not Limit | imited<br>ly Limited | to Watertable:    | in       |  |  |  |
| 5. Lo                           | Landform<br>Paren<br>Map Unit<br>Ratings                                            | position(s):  t materials:  Depth to  Septic Tan  Septic Tan  Septic Tan  Man                                    | Shoulder Till Bedrock/Res k Absorption ank Absorption hank Absorption formation me of LGU:                        | strictive Feat<br>n Field- At-gra<br>ion Field- Mou<br>on Field- Trei<br>Morriosn Co | ade: Slightly Lund: Moderate nch: Not Limit | imited<br>ly Limited | n to Watertable:  | in       |  |  |  |
| 5. Lo                           | Landform Paren  Map Unit Ratings                                                    | position(s):  t materials:  Depth to  Septic Tan  Septic Ta  Septic Ta  ment Unit In  Nat                        | Shoulder Till Bedrock/Res k Absorption ank Absorption ank Absorption formation me of LGU: GU Contact: c setbacks: | strictive Feat<br>n Field- At-gra<br>ion Field- Mou<br>on Field- Trei<br>Morriosn Co | ade: Slightly Lund: Moderate nch: Not Limit | imited<br>ly Limited | n to Watertable:  | in       |  |  |  |
|                                 | Landform Paren  Map Unit Ratings  Cal Governi                                       | position(s):  t materials:  Depth to  Septic Tan  Septic Ta  Septic Ta  Man  LG  LGU-specifi                     | Shoulder Till Bedrock/Res k Absorption ank Absorption formation me of LGU: GU Contact: c setbacks: puirements:    | strictive Feat<br>n Field- At-gra<br>ion Field- Mou<br>on Field- Trei<br>Morriosn Co | ade: Slightly Lund: Moderate nch: Not Limit | imited<br>ly Limited | to Watertable:    | in       |  |  |  |
|                                 | Landform Paren  Map Unit Ratings  Cal Governi                                       | position(s):  t materials:  Depth to  Septic Tan  Septic Ta  Septic Ta  Mai  LG  LGU-specific ic design requires | Shoulder Till Bedrock/Res k Absorption ank Absorption formation me of LGU: GU Contact: c setbacks: puirements:    | strictive Feat<br>n Field- At-gra<br>ion Field- Mou<br>on Field- Trei<br>Morriosn Co | ade: Slightly Lund: Moderate nch: Not Limit | imited<br>ly Limited | to Watertable:    | in       |  |  |  |



## Field Evaluation Worksheet



| 1. Project Information v 04.01.2020                                                               |                                                                             |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Property Owner/Client: JOSEPH & BARBARA ANN FUCHS Project ID:                                     |                                                                             |  |  |  |  |  |  |  |
| Site Address: 3200 450th street freeport MN 56331 Date Completed: 8/29/2021                       |                                                                             |  |  |  |  |  |  |  |
| 2. Utility and Structure Inform                                                                   | 2. Utility and Structure Information                                        |  |  |  |  |  |  |  |
| Utility Locations Identified 🔲 🤇                                                                  | Utility Locations Identified Gopher State One Call # Any Private Utilities: |  |  |  |  |  |  |  |
| Locate and Verify (see Site Eval                                                                  | Locate and Verify (see Site Evaluation map )                                |  |  |  |  |  |  |  |
| 3. Site Information                                                                               |                                                                             |  |  |  |  |  |  |  |
| Vegetation type(s):                                                                               | Grass Landscape position: Shoulder                                          |  |  |  |  |  |  |  |
| Percent slope: 1                                                                                  | % Slope shape: Linear, Linear Slope direction: south                        |  |  |  |  |  |  |  |
| Describe the flooding or rur                                                                      | un-on potential of site:                                                    |  |  |  |  |  |  |  |
| Describe the need for Type                                                                        | e III or Type IV system:                                                    |  |  |  |  |  |  |  |
| Note:                                                                                             |                                                                             |  |  |  |  |  |  |  |
| Proposed soil treatment a                                                                         | area protected? (Y/N): Yes If yes, describe: flags                          |  |  |  |  |  |  |  |
| 4. General Soils Information                                                                      |                                                                             |  |  |  |  |  |  |  |
| Filled, Compacted, Disturbed areas (Y/N): No                                                      |                                                                             |  |  |  |  |  |  |  |
| If yes, describe:                                                                                 |                                                                             |  |  |  |  |  |  |  |
| Soil                                                                                              | il observations were conducted in the proposed system location (Y/N):       |  |  |  |  |  |  |  |
| A soi                                                                                             | oil observation in the most limiting area of the proposed system (Y/N):     |  |  |  |  |  |  |  |
| Number of soil obse                                                                               | servations: 3 Soil observation logs attached (Y/N): Yes                     |  |  |  |  |  |  |  |
|                                                                                                   | Percolation tests performed & attached (Y/N): No                            |  |  |  |  |  |  |  |
| 5. Phase I. Reporting Informat                                                                    | ation                                                                       |  |  |  |  |  |  |  |
|                                                                                                   | Depth Elevation                                                             |  |  |  |  |  |  |  |
| Limiting Condition*:                                                                              | 22 in 93.1 ft *Most Restrictive Depth Identified from List Below            |  |  |  |  |  |  |  |
| Periodically saturated soil:                                                                      | in ft Soil Texture: medium sandy loam                                       |  |  |  |  |  |  |  |
| Standing water:                                                                                   | in ft Percolation Rate: min/inch                                            |  |  |  |  |  |  |  |
| Bedrock:                                                                                          | in ft Soil Hyd Loading Rate: 0.68 gpd/ft <sup>2</sup>                       |  |  |  |  |  |  |  |
| Benchmark Elevation:                                                                              | ft Elevations and Benchmark on map? (Y/N): Yes                              |  |  |  |  |  |  |  |
| Benchmark Elevation Location:                                                                     | drive pad by house                                                          |  |  |  |  |  |  |  |
| Differences between soil survey and field evaluation: soil survey says no limt and its at 18inchs |                                                                             |  |  |  |  |  |  |  |
| Site evaluatio                                                                                    | on issues / comments: pipe need to be instulaed across road                 |  |  |  |  |  |  |  |
| Anticipated construction issu                                                                     | Anticipated construction issues:  need insulated pipe for going under road  |  |  |  |  |  |  |  |



# Design Summary Page



| 1. PROJECT INFORMATION                                                                | v 04.01.2020                                          |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|--|--|--|
| Property Owner/Client: JOSEPH & BARBARA ANN FUCHS                                     | Project ID:                                           |  |  |  |  |  |  |  |  |
| Site Address: 3200 450th street freeport MN 5                                         | 6331 Date: 08/29/21                                   |  |  |  |  |  |  |  |  |
| Email Address:                                                                        | Phone: 3202907056                                     |  |  |  |  |  |  |  |  |
| 2. DESIGN FLOW & WASTE STRENGTH Attach data / estimate basis for Other Establishments |                                                       |  |  |  |  |  |  |  |  |
| Design Flow: 600 GPD                                                                  | Anticipated Waste Type:                               |  |  |  |  |  |  |  |  |
| BOD: mg/L TSS                                                                         | mg/L Oil & Grease: mg/L                               |  |  |  |  |  |  |  |  |
| Treatment Level: Select Treat                                                         | ment Level C for residential septic tank effluent     |  |  |  |  |  |  |  |  |
| 3. HOLDING TANK SIZING                                                                |                                                       |  |  |  |  |  |  |  |  |
| Minimum Capacity: Residential =400 gal/bedroom, Other Establi                         | shment = Design Flow x 5.0, Minimum size 1000 gallons |  |  |  |  |  |  |  |  |
| Code Minimum Holding Tank Capacity: Gallons                                           | in Tanks or Compartments                              |  |  |  |  |  |  |  |  |
| Recommended Holding Tank Capacity: Gallons                                            | in Tanks or Compartments                              |  |  |  |  |  |  |  |  |
| Type of High Level Alarm:                                                             | (Set @ 75% tank capacity)                             |  |  |  |  |  |  |  |  |
| Comments:                                                                             |                                                       |  |  |  |  |  |  |  |  |
| 4. SEPTIC TANK SIZING                                                                 |                                                       |  |  |  |  |  |  |  |  |
| A. Residential dwellings:                                                             |                                                       |  |  |  |  |  |  |  |  |
| Number of Bedrooms (Residential): 4                                                   |                                                       |  |  |  |  |  |  |  |  |
| Code Minimum Septic Tank Capacity: 1500 Gallons                                       | in 1 Tanks or Compartments                            |  |  |  |  |  |  |  |  |
| Recommended Septic Tank Capacity: 1000 Gallons                                        | in 1 Tanks or Compartments                            |  |  |  |  |  |  |  |  |
| Effluent Screen & Alarm (Y/N): Optional Model                                         | /Type:                                                |  |  |  |  |  |  |  |  |
| B. Other Establishments:                                                              |                                                       |  |  |  |  |  |  |  |  |
| Waste received by:                                                                    | GPD x Days Hyd. Retention Time                        |  |  |  |  |  |  |  |  |
| Code Minimum Septic Tank Capacity: Gallons                                            | In Tanks or Compartments                              |  |  |  |  |  |  |  |  |
| Recommended Septic Tank Capacity: Gallons                                             | In Tanks or Compartments                              |  |  |  |  |  |  |  |  |
| Effluent Screen & Alarm (Y/N): Model                                                  | /Type:                                                |  |  |  |  |  |  |  |  |
| 5. PUMP TANK SIZING                                                                   |                                                       |  |  |  |  |  |  |  |  |
| Pump Tank 1 Capacity (Minimum): 600 Gal                                               | Pump Tank 2 Capacity (Minimum):                       |  |  |  |  |  |  |  |  |
| Pump Tank 1 Capacity (Recommended): 600 Gal Pur                                       | mp Tank 2 Capacity (Recommended):                     |  |  |  |  |  |  |  |  |
| Pump 1 38.0 GPM Total Head 12.4 ft                                                    | Pump 2 GPM Total Head ft                              |  |  |  |  |  |  |  |  |
| Supply Pipe Dia. 2.00 in Dose Vol: 110.0 gal Sup                                      | pply Pipe Dia. Dose Vol: Gal                          |  |  |  |  |  |  |  |  |
|                                                                                       |                                                       |  |  |  |  |  |  |  |  |



# Design Summary Page



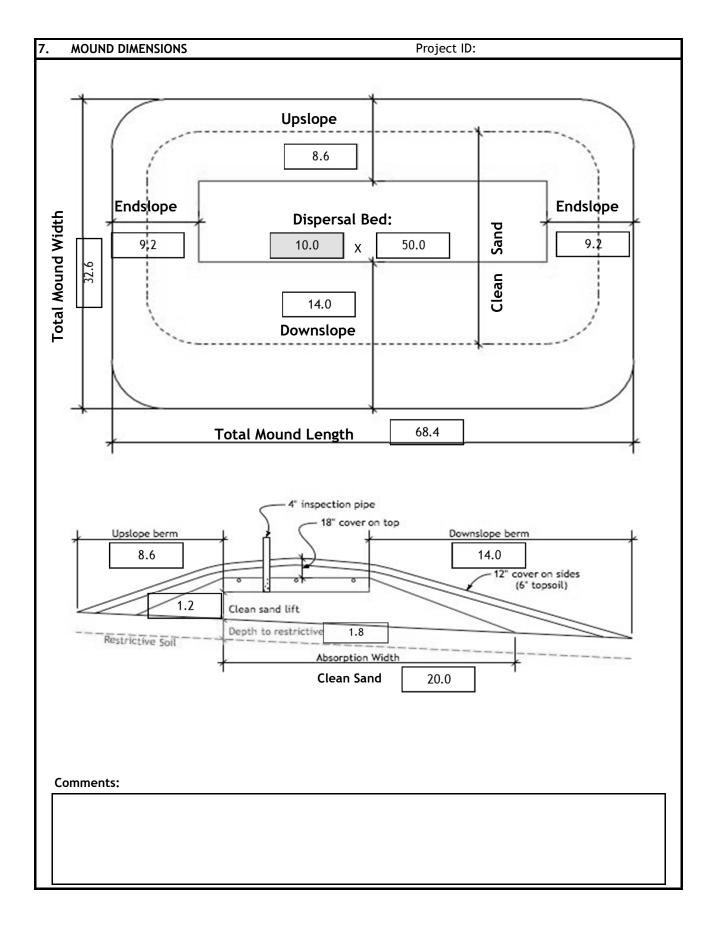
| 6. SYSTEM AND DISTRIBU                                                                                     | TION TYPE           | Proj                    | ect ID:        |                                          |        |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|---------------------|-------------------------|----------------|------------------------------------------|--------|--|--|--|--|
| Soil Treatment Type:                                                                                       | Mound               | Distri                  | bution Type:   | Pressure Distribution-Level              |        |  |  |  |  |
| Elevation Benchmark:                                                                                       | 100 ft              | Benchma                 | rk Location:   | drive pad by house                       |        |  |  |  |  |
| MPCA System Type:                                                                                          | Type I              | Distrib                 | ution Media:   | Rock                                     |        |  |  |  |  |
| Type III/IV Details:                                                                                       |                     |                         |                |                                          |        |  |  |  |  |
| 7. SITE EVALUATION SUMMARY:                                                                                |                     |                         |                |                                          |        |  |  |  |  |
| Describe Limiting Condition: Redoximorphic Features/Saturated Soils                                        |                     |                         |                |                                          |        |  |  |  |  |
| Layers with >35% Rock Fragments? (yes/no) No If yes, describe below: % rock and layer thickness, amount of |                     |                         |                |                                          |        |  |  |  |  |
| soil credit and any addit                                                                                  | tional information  | for addressing the      | rock fragmen   | nts in this design.                      | _      |  |  |  |  |
| Note:                                                                                                      |                     |                         |                |                                          |        |  |  |  |  |
|                                                                                                            | Depth               | Depth                   | Elevation o    | f Limiting Condition                     |        |  |  |  |  |
| Limiting Condition:                                                                                        | 22 inch             | nes 1.8 ft              | 93.10          | ft                                       |        |  |  |  |  |
| Minimum Req'd Separation:                                                                                  | 36 inch             | es 3.0 ft               | Elevation      | Critical for system compli               | ance   |  |  |  |  |
| Code Max System Depth:                                                                                     |                     |                         | 96.10          | ft                                       |        |  |  |  |  |
|                                                                                                            |                     | 1                       | ed separation. | Negative Depth (ft) means it must be a m | ound.  |  |  |  |  |
| Soil Texture:                                                                                              | Sandy L             |                         |                |                                          |        |  |  |  |  |
| Soil Hyd. Loading Rate:                                                                                    |                     | o/ft <sup>2</sup> Perco | olation Rate:  | MPI                                      |        |  |  |  |  |
| Contour Loading Rate:                                                                                      | 12                  | Note:                   |                |                                          |        |  |  |  |  |
| Measured Land Slope:                                                                                       | 1.0 %               | Note:                   |                |                                          |        |  |  |  |  |
| Comments:                                                                                                  |                     |                         |                |                                          |        |  |  |  |  |
| 8. SOIL TREATMENT AREA                                                                                     | DESIGN SUMMA        | ARY                     |                |                                          |        |  |  |  |  |
| Trench:                                                                                                    |                     |                         |                |                                          | _      |  |  |  |  |
| Dispersal Area                                                                                             |                     | dewall Depth            | in             | Trench Width                             | ft     |  |  |  |  |
| Total Lineal Feet                                                                                          | ft No               | . of Trenches           |                | Code Max. Trench Depth                   | in     |  |  |  |  |
| Contour Loading Rate                                                                                       | ft                  | Length                  | ft             | Designed Trench Depth                    | in     |  |  |  |  |
| Bed:                                                                                                       |                     |                         |                |                                          |        |  |  |  |  |
| Dispersal Area                                                                                             | ft² Si              | dewall Depth            | in             | Maximum Bed Depth                        | in     |  |  |  |  |
| Bed Width                                                                                                  | ft                  | Bed Length              | ft             | Designed Bed Depth                       | in     |  |  |  |  |
| Mound:                                                                                                     |                     |                         |                |                                          |        |  |  |  |  |
| Dispersal Area 50                                                                                          | 0.0 ft <sup>2</sup> | Bed Length 5            | 0.0 ft         | Bed Width 10.0                           | ft     |  |  |  |  |
| Absorption Width 20                                                                                        | 0.0 ft Cl           | ean Sand Lift           | 1.2 ft         | Berm Width (0-1%) 12.0                   | ft     |  |  |  |  |
| Upslope Berm Width 12                                                                                      | 2.0 ft Dov          | vnslope Berm 1          | 2.0 ft         | Endslope Berm Width 12.0                 | ft     |  |  |  |  |
| Total System Length 74                                                                                     | 4.0 ft S            | System Width 3          | 4.0 ft         | Contour Loading Rate 12.0                | gal/ft |  |  |  |  |



# Design Summary Page



|                                     |                           |               |                     |                |             | Project ID:          |                    |                       |  |  |
|-------------------------------------|---------------------------|---------------|---------------------|----------------|-------------|----------------------|--------------------|-----------------------|--|--|
| At-Grade:                           |                           |               | _                   |                |             | _                    |                    |                       |  |  |
| Bed Width                           |                           |               | ft                  | Bed Length     |             | ft                   | Finished H         | Height                |  |  |
| Contour Loading Rate                |                           |               | gal/ft Upslope Berm |                |             | ft Downslope Berm ft |                    |                       |  |  |
| Enc                                 | dslope Berm               |               | ft Sys              | stem Length    |             | ft                   | System             | Width ft              |  |  |
| Level & Equal Pressure Distribution |                           |               |                     |                |             |                      |                    |                       |  |  |
| No.                                 | of Laterals               | 3             | Perfora             | tion Spacing   | 3           | ft Pei               | rforation Dia      | meter 1/4 in          |  |  |
| Later                               | al Diameter               | 2.00          | in Min D            | ose Volume     | 98          | gal                  | Max Dose Vo        | olume 150 gal         |  |  |
| Non-Level a                         | and Unequa                | l Pressure [  |                     |                |             |                      |                    | 7                     |  |  |
|                                     | Elevation                 | Pipe Size     | Pipe                | Pipe           | Perf Size   | Spacing              | Spacing            |                       |  |  |
|                                     | (ft)                      | (in)          | Volume<br>(gal/ft)  | Length (ft)    | (in)        | (ft)                 | (in)               | Minimum Dose          |  |  |
| Lateral 1                           |                           |               | (gut/1t)            |                |             |                      |                    | Volume                |  |  |
| Lateral 2                           |                           |               |                     |                |             |                      |                    | gal                   |  |  |
| Lateral 3                           |                           |               |                     |                |             |                      |                    |                       |  |  |
| Lateral 4                           |                           |               |                     |                |             |                      |                    | Maximum Dose          |  |  |
| Lateral 5                           |                           |               |                     |                |             |                      |                    | Volume                |  |  |
| Lateral 6                           |                           |               |                     |                |             |                      |                    | gal                   |  |  |
| 9. Addit                            | ional Info fo             | or At-Risk,   | HSW or Typ          | e IV Design    |             |                      |                    |                       |  |  |
| <b>A.</b> Starti                    | ng BOD Cond               | centration =  | Design Flow         | / X Starting B | SOD (mg/L)  | X 8.35 ÷ 1,0         | 000,000            |                       |  |  |
|                                     | gpd                       | Х             | mg/L                | X 8.35 ÷ 1,0   | 00,000 =    |                      | lbs. BOD/da        | ау                    |  |  |
| B. Targe                            | t BOD Conce               | entration =   | Design Flow         | X Target BO    | D (mg/L) X  | 8.35 ÷ 1,000         |                    |                       |  |  |
|                                     | gpd                       | Х             | mg/L                | X 8.35 ÷ 1,0   | 00,000 =    |                      | lbs. BOD/da        | ay                    |  |  |
|                                     |                           |               | <br>Lb              | os. BOD To Be  | e Removed:  |                      | Ī                  |                       |  |  |
| Pre                                 | Treatment <sup>-</sup>    | Technology:   |                     |                |             |                      | *Must              | Meet or Exceed Target |  |  |
| D                                   | isinfection <sup>-</sup>  | Technology:   |                     |                |             |                      | *Requ              | ired for Levels A & B |  |  |
| <b>C.</b> Organ                     | ic Loading t              | o Soil Treat  | ment Area:          |                |             |                      | <u>-</u>           |                       |  |  |
|                                     | mg/L                      | Х             | gpd                 | x 8.35 ÷ 1,0   | 00,000 ÷    |                      | ft <sup>2</sup> =  | lbs./day/ft²          |  |  |
| 10. Comn                            | nents/Speci               | al Design Co  | nsideration         | ns:            |             |                      |                    |                       |  |  |
|                                     | -                         |               |                     |                |             |                      |                    |                       |  |  |
|                                     |                           |               |                     |                |             |                      |                    |                       |  |  |
| I here                              | by certify th             | nat I have co | mnleted th          | is work in acc | cordance wi | ith all annlie       | cable ordinar      | nces, rules and laws. |  |  |
|                                     |                           |               |                     |                |             |                      | 4018               |                       |  |  |
| K                                   | ody Throene<br>(Designer) | <del></del>   |                     | (Signatur      | e)<br>ENEV  | ] <u> </u>           | 4018<br>-icense #) | 8/29/2021<br>(Date)   |  |  |
|                                     | (= -5.5.16.)              |               |                     | ,5.5.14641     | - /         | (-                   |                    | (= 300)               |  |  |




# Mound Design Worksheet ≥1% Slope



| 1. | SYSTEM SIZING:                 |                          |               |        |                |          | Project ID:   |            |                     |                                                                                                                         | v 04.01.2020                           |                                                                     |                                                              |                              |  |
|----|--------------------------------|--------------------------|---------------|--------|----------------|----------|---------------|------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------|------------------------------|--|
| -  | A. Design Flow:                |                          |               |        |                |          | 60            | 00         | GPD                 |                                                                                                                         | TAB                                    | LE IXa                                                              | 1                                                            |                              |  |
| I  | В.                             | Soil Load                | ing Ra        | ate:   |                |          | 0.            | 68         | GPD/ft <sup>2</sup> |                                                                                                                         |                                        | OR DETERMINING BOTTOM ABSORPTION TION RATIOS USING PERCOLATION TEST |                                                              |                              |  |
| (  | C. Depth to Limiting Condition |                          |               |        |                |          | 1.            | .8         | ft                  |                                                                                                                         | Treatmen                               | vel A, A-2, B,                                                      |                                                              |                              |  |
| ı  | D.                             | Percent I                | Land S        | lope   | :              |          | 1.            | .0         | %                   | Percolation Rate<br>(MPI)                                                                                               | Absorption Area Loading Rate (gpd/ft²) | Mound<br>Absorption<br>Ratio                                        | Absorption<br>Area Loading<br>Rate<br>(gpd/ft <sup>2</sup> ) | Mound<br>Absorption<br>Ratio |  |
| ı  | Ε.                             | Design M                 | edia L        | .oadii | ng Rate:       |          | 1.            | .2         | GPD/ft <sup>2</sup> | <0.1                                                                                                                    | -                                      | 1                                                                   | -                                                            | 1                            |  |
| ı  | F.                             | Mound Al                 | bsorpt        | ion R  | latio:         |          | 2.            | 00         |                     | 0.1 to 5                                                                                                                | 1.2                                    | 1                                                                   | 1.6                                                          | 1                            |  |
|    | Г                              |                          | '             |        | Table I        |          |               |            |                     | 0.1 to 5 (fine sand and loamy fine sand)                                                                                | 0.6                                    | 2                                                                   | 1                                                            | 1.6                          |  |
|    | ı                              |                          | MOUNI         | CON    | TOUR LOADIN    | G RAT    | TES:          |            |                     | 6 to 15                                                                                                                 | 0.78                                   | 1.5                                                                 | 1                                                            | 1.6                          |  |
|    | r                              | Measured                 | ←             | То     | xture - derive | 4        |               | Conto      | ur                  | 16 to 30                                                                                                                | 0.6                                    | 2                                                                   | 0.78                                                         | 2                            |  |
|    |                                | Perc Rate                | OR            |        | d absorption r |          |               | Loadi      | _                   | 31 to 45                                                                                                                | 0.5                                    | 2.4                                                                 | 0.78                                                         | 2                            |  |
|    | ŀ                              |                          | $\rightarrow$ |        |                | -        |               | Rate       |                     | 46 to 60                                                                                                                | 0.45                                   | 2.6                                                                 | 0.6                                                          | 2.6                          |  |
|    | ı                              | ≤ 60mpi                  |               | 1.0,   | 1.3, 2.0, 2.4, | 2.6      | $\rightarrow$ | ≤12        |                     | 61 to 120                                                                                                               | -                                      | 5                                                                   | 0.3                                                          | 5.3                          |  |
|    | H                              |                          | <b>←</b>      |        |                | ┥        |               | - 40       | ┥                   | >120                                                                                                                    | -                                      | -                                                                   | -                                                            | •                            |  |
|    | ŀ                              | 61-120 mpi<br>≥ 120 mpi* | OR<br>→       |        | >5.0*          | $\dashv$ | $\rightarrow$ | ≤12<br>≤6* | *                   | *Systems with these values are not Type I systems.  Contour Loading Rate (linear loading rate) is a  recommended value. |                                        |                                                                     |                                                              |                              |  |
| 2. | _                              | DISPERSA                 |               | DIA C  | TITING         | _        |               |            |                     | <u> </u>                                                                                                                | ccommen                                | aca vatae                                                           | •                                                            |                              |  |
|    |                                |                          |               |        |                |          | - FI          | A D        | : 11                | lia I aadiaa Dat                                                                                                        | _                                      |                                                                     |                                                              |                              |  |
| •  | Α.                             | Calculate                | -             |        | 1              | esigi    |               |            | 1                   | lia Loading Rat                                                                                                         |                                        |                                                                     |                                                              |                              |  |
|    |                                |                          | 600           |        | GPD ÷          |          | 1.            | .2         | GPD/ft <sup>2</sup> | = 500                                                                                                                   | ft <sup>2</sup>                        |                                                                     |                                                              |                              |  |
|    |                                | If a                     | large         | r disp | oersal media   | area     | a is          | desire     | d, enter s          | ize:                                                                                                                    | ft <sup>2</sup>                        |                                                                     |                                                              |                              |  |
| ı  | В.                             | Enter Dis                | persa         | l Bed  | Width:         |          | 10            | 0.0        | ft Co               | an not exceed                                                                                                           | <br>10 feet                            |                                                                     |                                                              |                              |  |
|    |                                |                          | -             |        |                | . Bo     | 4 W           | idth Y     | 1                   | edia Loading R                                                                                                          | •                                      |                                                                     |                                                              |                              |  |
| •  | ٠.                             | Catculate                | 10            | .oui L | 1 —            | 1.2      | u **          | GPD/f      |                     | 1                                                                                                                       |                                        | C t -                                                               |                                                              | -1- 4                        |  |
|    |                                | L                        |               |        | l              |          |               |            | _                   | 5                                                                                                                       |                                        | can not e                                                           | exceed Tal                                                   | ole I                        |  |
| I  | D.                             | Calculate                | Minii         | mum    | ı              | ed Le    | ngt           | h: Disp    | ersal Bec           | Area ÷ Bed W                                                                                                            | idth/                                  |                                                                     |                                                              |                              |  |
|    |                                |                          | 500           |        | $ft^2 \div 1$  | 10.0     |               | ft =       | 50.0                | ft                                                                                                                      |                                        |                                                                     |                                                              |                              |  |
| 3. |                                | ABSORPT                  | TION A        | AREA   | SIZING         |          |               |            |                     |                                                                                                                         |                                        |                                                                     |                                                              |                              |  |
|    | ٨                              | Calculate                | Abso          | rntic  | n Width: Be    | d W:     | dth           | Y Mou      | nd Absor            | ntion Patio                                                                                                             |                                        |                                                                     |                                                              |                              |  |
| ,  | ۸.                             | Calculate                | 10.0          | •      | 1              | 2.0      | uui           | = × Mou    | 20.0                |                                                                                                                         |                                        |                                                                     |                                                              |                              |  |
|    | _                              |                          | . 40/         |        | . L            | 147: 1:  |               |            |                     | 1.11.6                                                                                                                  |                                        |                                                                     | D. J                                                         |                              |  |
| ı  | В.                             |                          |               |        |                |          |               |            |                     | hill from the u                                                                                                         |                                        | ge of the                                                           | Bed.                                                         |                              |  |
|    |                                | Calculate                | e Dow         | nslop  | e Absorption   | n Wid    | dth:          | Absor      | otion Wid           | th - Bed Width                                                                                                          | າ                                      |                                                                     |                                                              |                              |  |
|    |                                |                          |               |        |                |          | 20            | 0.0        | ft -                | 10.0 ft                                                                                                                 | = 10                                   | .0 ft                                                               |                                                              |                              |  |
| 4. |                                | DISTRIBL                 | JTION         | MED    | IA: ROCK       |          |               |            |                     | Project                                                                                                                 | ID:                                    |                                                                     |                                                              |                              |  |
|    | ٨                              |                          |               |        | Distribution   | Pine     |               |            |                     | <u>, , , , , , , , , , , , , , , , , , , </u>                                                                           |                                        |                                                                     |                                                              |                              |  |
| ,  | ٦.                             |                          |               |        | 1              | ¬        |               |            |                     |                                                                                                                         |                                        |                                                                     |                                                              |                              |  |
|    |                                | 6                        | ir            | 1      | 0.50           | ft       |               |            |                     |                                                                                                                         |                                        |                                                                     |                                                              |                              |  |

| 5. DISTRIBUTION MEDIA: REGISTER                                     | RED TREATMENT PR                                    | ODUCTS: CHAMBERS AND                       | EZFLOW         |                        |  |  |  |  |  |
|---------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------|----------------|------------------------|--|--|--|--|--|
| A. Enter Dispersal Media:                                           |                                                     |                                            |                |                        |  |  |  |  |  |
| B. Enter the Component: Length:                                     | ft                                                  | Width:                                     | ft Depth:      | ft                     |  |  |  |  |  |
| C. Number of Components per Row                                     | = Bed Length divide                                 | ed by Component Length (                   | Round up)      |                        |  |  |  |  |  |
| ft ÷                                                                | ft =                                                | components/row                             | Check regis    | tered product          |  |  |  |  |  |
| <b>D.</b> Actual Bed Length = Number of 0                           | Components/row X                                    | Component Length:                          | informatio     | n for specific         |  |  |  |  |  |
| components X   ft =   application details and                       |                                                     |                                            |                |                        |  |  |  |  |  |
| E. Number of Rows = Bed Width divided by Component Width (Round up) |                                                     |                                            |                |                        |  |  |  |  |  |
| ft ÷                                                                | ft =                                                | rows Adjust width                          |                | le number.             |  |  |  |  |  |
| F. Total Number of Components = 1                                   |                                                     |                                            | Rows           |                        |  |  |  |  |  |
| X                                                                   | =                                                   | components                                 |                |                        |  |  |  |  |  |
| 6. MOUND SIZING                                                     |                                                     |                                            |                |                        |  |  |  |  |  |
| A. Clean Sand Lift: Required Separa                                 |                                                     | _                                          |                |                        |  |  |  |  |  |
| 3.0 ft - 1.8 ft =                                                   | 1.2 ft                                              | Design Sand Lift (optiona                  | ·              | ft                     |  |  |  |  |  |
| B. Upslope Height: Clean Sand Lift                                  | 1 .                                                 | <u> </u>                                   |                |                        |  |  |  |  |  |
| 1.2 ft + 0.50                                                       | ft + 0.3                                            | ft + 1.0 ft =                              | 3.0            | ft                     |  |  |  |  |  |
| Land Slope % 0 1                                                    | 2 3 4                                               | 5 6 7 8                                    | 9 10           | 11 12                  |  |  |  |  |  |
| II                                                                  | 2.83     2.75     2.68       3.70     3.57     3.45 | 2.61 2.54 2.48 2.42<br>3.33 3.23 3.12 3.03 |                | 2.26 2.21<br>2.78 2.70 |  |  |  |  |  |
| C. Select Upslope Berm Multiplier (                                 |                                                     |                                            |                | •                      |  |  |  |  |  |
| D. Calculate Upslope Berm Width: /                                  | -                                                   | ,                                          |                |                        |  |  |  |  |  |
| 5. catediate opstope berni widen.                                   | 2.91 ft X                                           |                                            | 8.6 ft         |                        |  |  |  |  |  |
| E. Calculate Drop in Elevation Unde                                 |                                                     |                                            |                |                        |  |  |  |  |  |
|                                                                     | 10.0 ft X                                           |                                            |                | ft                     |  |  |  |  |  |
| F. Calculate Downslope Mound Heig                                   |                                                     |                                            |                |                        |  |  |  |  |  |
| , , ,                                                               | 3.0 ft +                                            |                                            | 3.1 ft         |                        |  |  |  |  |  |
| Land Slope % 0 1                                                    | 2 3 4                                               | 5 6 7 8                                    | 9 10           | 11 12                  |  |  |  |  |  |
|                                                                     | 3.19 3.30 3.41                                      | 3.53 3.66 3.80 3.95                        |                | 4.48 4.69              |  |  |  |  |  |
| Berm Ratio 4:1 4.00 4.17                                            | 4.35   4.54   4.76                                  | 5.00   5.26   5.56   5.88                  | 6.25 6.67      | 7.14 7.69              |  |  |  |  |  |
| <b>G.</b> Select Downslope Berm Multiplie                           |                                                     |                                            |                |                        |  |  |  |  |  |
| H. Calculate Downslope Berm Widtl                                   |                                                     |                                            |                |                        |  |  |  |  |  |
|                                                                     | 3.19 x                                              |                                            | 9.8 ft         |                        |  |  |  |  |  |
| I. Calculate Minimum Berm to Cove                                   |                                                     |                                            |                |                        |  |  |  |  |  |
|                                                                     | 10.0 ft +                                           | 4 ft =                                     | 14.0 ft        |                        |  |  |  |  |  |
| J. Design Downslope Berm = greate                                   | er of 4H and 4I:                                    | 14.0 ft                                    |                |                        |  |  |  |  |  |
| K. Select Endslope Berm Multiplier:                                 |                                                     | 3.00                                       | (usually 3.0 c | or 4.0)                |  |  |  |  |  |
| L. Calculate Endslope Berm X Dow                                    | nslope Mound Heigh                                  | nt = Endslope Berm Width                   |                |                        |  |  |  |  |  |
|                                                                     | 3.00 ft )                                           | ( 3.1 ft =                                 | 9.2 ft         |                        |  |  |  |  |  |
| M. Calculate Mound Width: Upslope                                   | Berm Width + Bed                                    | Width + Downslope Berm \                   | Width          |                        |  |  |  |  |  |
| 8                                                                   | .6 ft + 1                                           | 0.0 ft + 14.0                              | ft = 32        | .6 ft                  |  |  |  |  |  |
| N. Calculate Mound Length: Endslop                                  | oe Berm Width + Be                                  | ed Length + Endslope Berr                  | n Width        |                        |  |  |  |  |  |
| 9                                                                   | .2 ft + 5                                           | 0.0 ft + 9.2                               | ft = 68        | .4 ft                  |  |  |  |  |  |





### Mound Materials Worksheet



| Project ID: v 04.01.2020                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. Rock Volume: (Rock Below Pipe + Rock to cover pipe (pipe outside dia + ~2 inch)) X Bed Length X Bed Width = Volume                                                                                            |
| ( 6 in + 4.0 in) ÷ 12 X 50.0 ft X 10.0 ft = 416.7 ft <sup>3</sup>                                                                                                                                                |
| Divide $ft^3$ by 27 $ft^3/yd^3$ to calculate cubic yards: 416.7 $ft^3 \div 27 = 15.4$ $yd^3$                                                                                                                     |
| Add 30% for constructability: $15.4 	 yd^3 X 	 1.3 = 20.1 	 yd^3$                                                                                                                                                |
| B. Calculate Clean Sand Volume:                                                                                                                                                                                  |
| Volume Under Rock bed: Average Sand Depth $\times$ Media Width $\times$ Media Length = cubic feet  1.2 If $X$ 10.0 If $X$ 50.0 If $X$ 600.0 If $X$ 600.0                                                         |
| For a Mound on a slope from 0-1%                                                                                                                                                                                 |
| Volume from Length = ((Upslope Mound Height - 1) X Absorption Width Beyond Bed X Media Bed Length)         3.00       ft - 1) X       5.00       X       50       ft =       500.00                              |
| Volume from Width = ((Upslope Mound Height - 1) X Absorption Width Beyond Bed X Media Bed Width)  3.00  ft - 1)  X                                                                                               |
| Total Clean Sand Volume: Volume from Length + Volume from Width + Volume Under Media                                                                                                                             |
| For a Mound on a slope greater than 1%                                                                                                                                                                           |
| $ Upslope \ Volume: ((Upslope \ Mound \ Height - 1) \times 3 \times Bed \ Length) \div 2 = cubic \ feet \\ (( \boxed{ 3.0 } ft - 1) \times 3.0 \ ft \times 3.0 \ ft \times 3.0 ) \div 2 = \boxed{ 147.5 } ft^3 $ |
| Downslope Volume: ((Downslope Height - 1) x Downslope Absorption Width x Media Length ) $\div$ 2 = cubic feet (( 3.1  ft - 1)  X  10.0  ft  X  50.0 ) $\div$ 2 = 516.7  ft <sup>3</sup>                          |
| Endslope Volume: (Downslope Mound Height - 1) $\times$ 3 $\times$ Media Width = cubic feet  ( 3.1  ft - 1 ) $\times$ 3.0 ft $\times$ 10.0 ft = 62.0 ft <sup>3</sup>                                              |
| Total Clean Sand Volume: Upslope Volume + Downslope Volume + Endslope Volume + Volume Under Media                                                                                                                |
| Divide ft <sup>3</sup> by 27 ft <sup>3</sup> /yd <sup>3</sup> to calculate cubic yards: $1326.2$ ft <sup>3</sup> ÷ 27 = $49.1$ yd <sup>3</sup>                                                                   |
| Add 30% for constructability:                                                                                                                                                                                    |
| C. Calculate Sandy Berm Volume:                                                                                                                                                                                  |
| Total Berm Volume (approx): ((Avg. Mound Height - 0.5 ft topsoil) x Mound Width x Mound Length) $\div$ 2 ( 3.0 - 0.5 )ft X 34.0 ft X 74.0 ) $\div$ 2 = 3166.0 ft <sup>3</sup>                                    |
| Total Mound Volume - Clean Sand volume - Rock Volume = cubic feet                                                                                                                                                |
| Divide $ft^3$ by 27 $ft^3/yd^3$ to calculate cubic yards: 1423.1 $ft^3 \div 27 = 52.7$ $yd^3$                                                                                                                    |
| Add 30% for constructability:                                                                                                                                                                                    |
| D. Calculate Topsoil Material Volume: Total Mound Width X Total Mound Length X .5 ft                                                                                                                             |
| 34.0 ft X 74.0 ft X 0.5 ft = 1258.0 ft <sup>3</sup>                                                                                                                                                              |
| Divide $ft^3$ by 27 $ft^3/yd^3$ to calculate cubic yards: 1258.0 $ft^3 \div 27 = 46.6$ $yd^3$                                                                                                                    |
| Add 30% for constructability:                                                                                                                                                                                    |



#### Pressure Distribution Design Worksheet



|         |                                                                                                      | ~          |              |            |             | Project     | ID.                 |               |                                    |                 | ν 0.                | 4 01 2020  |
|---------|------------------------------------------------------------------------------------------------------|------------|--------------|------------|-------------|-------------|---------------------|---------------|------------------------------------|-----------------|---------------------|------------|
|         | Project ID: v 04.01.2020                                                                             |            |              |            |             |             |                     |               |                                    |                 |                     |            |
| 1.      | Media Bed Width                                                                                      | ı:         |              |            |             |             | 10 ft               |               |                                    |                 |                     |            |
| 2.      | 2. Minimum Number of Laterals in system/zone = Rounded up number of [(Media Bed Width - 4) ÷ 3] + 1. |            |              |            |             |             |                     |               |                                    |                 |                     |            |
|         |                                                                                                      | [(         | 10           | - 4)       | ÷ 3] + 1    | =           | 3 later             | als           | Does                               | not app         | ly to at-           | grades     |
| 3.      | Designer Selecte                                                                                     |            |              |            | arados)     |             | 3 later             | als           |                                    |                 |                     |            |
| 4.      | Cannot be less to<br>Select Perforation                                                              |            |              | )L III aL- | graaes)     |             | 3.00 ft             | 12            |                                    | Insulated acces | s box               | 7          |
| 5.      | Select <i>Perforatio</i>                                                                             | on Diam    | eter Size    | ·:         |             |             | 1/4 in              | 7/4" perforat | Geotes<br>ions spaced 3' ap        | hart 1":2"      | am<br>of rock       | 9 - 12     |
| 6.      | Length of Latera                                                                                     | ıls = Me   | dia Bed I    | _ength -   | 2 Feet.     | <u> </u>    |                     | Perfe         | ↑ 6" of rock<br>eration sizing: ½" | to 1/4" Perfor  | ation spacing: 2' 1 | to 3'      |
|         | 50.0                                                                                                 | - 2ft      | t =          | 48         | .0 f        | t <i>Pe</i> | erforation can no   | t be clos     | ser then                           | 1 foot f        | rom edg             | e.         |
| 7.      | Determine the N round down to the                                                                    |            |              |            |             | Divide th   | e Length of Late    | erals by      | the <i>Per</i>                     | foration        | Spacing             | g and      |
|         | Number of Perfo                                                                                      | ration S   | paces =      | 48         | .0 f        | t           | ÷ 3.0               | ft            | = [                                | 16              | Spa                 | ices       |
| 8.      | Number of Perfo                                                                                      |            |              |            |             |             |                     |               |                                    |                 |                     |            |
|         | verify the number with a center ma                                                                   |            | foration     | s per lat  | teral gua   | arantees    | less than a 10%     | discharg      | e variat                           | ion. Th         | e value i           | is double  |
|         | Per                                                                                                  | foration   | ns Per La    | teral =    | 16          | Sp          | aces + 1 =          | 1             | 7 F                                | Perfs. Pe       | r Latera            | ıl         |
|         |                                                                                                      |            |              |            | forations P | er Lateral  | to Guarantee <10% D |               |                                    |                 |                     |            |
|         |                                                                                                      | 1/4 Inch I | Perforation  |            |             |             |                     | 7/32          | nch Perfor                         |                 |                     |            |
| Perf    | oration Spacing (Feet)                                                                               |            | <del></del>  | iameter (I |             |             | Perforation Spacing |               |                                    | Diameter (I     |                     |            |
|         | 2                                                                                                    | 10         | 11/4         | 11/2       | 30          | 3<br>60     | (Feet)              | 1 11          | 11/4                               | 11/2            | 34                  | 3<br>68    |
|         | 21/2                                                                                                 | 8          | 12           | 16         | 28          | 54          | 21/2                | 10            | 14                                 | 20              | 32                  | 64         |
|         | 3                                                                                                    | 8          | 12           | 16         | 25          | 52          | 3                   | 9             | 14                                 | 19              | 30                  | 60         |
|         |                                                                                                      | 3/16 Inch  | Perforatio   | ns         |             |             |                     | 1/8 l         | nch Perfor                         | ations          |                     |            |
| Porf    | oration Spacing (Feet)                                                                               |            | Pipe D       | iameter (I | nches)      |             | Perforation Spacing |               | Pipe (                             | Diameter (I     | nches)              |            |
| 1011    |                                                                                                      | 1          | 1¼           | 11/2       | 2           | 3           | (Feet)              | 1             | 1¼                                 | 11/2            | 2                   | 3          |
|         | 2                                                                                                    | 12         | 18           | 26         | 46          | 87          | 2                   | 21            | 33                                 | 44              | 74                  | 149        |
|         | 3                                                                                                    | 12         | 17<br>16     | 24         | 40<br>37    | 80<br>75    | 2½<br>3             | 20            | 30<br>29                           | 41<br>38        | 69<br>64            | 135<br>128 |
|         |                                                                                                      | 12         | 10           | 22         | 37          | /3          | ,                   | 20            | 27                                 | 30              | 04                  | 120        |
|         |                                                                                                      | m          | anifold pipe | \<br>      |             |             | Cleanouts           |               |                                    |                 |                     |            |
|         |                                                                                                      |            |              | pipe       | from pump   |             | N                   | lanifold pipe |                                    |                 |                     |            |
| P       | 3                                                                                                    |            |              | <b>∖</b> L | -           |             |                     |               |                                    |                 |                     |            |
| clean o | outs e                                                                                               |            |              |            |             | 9_          |                     |               | 2                                  | A               | · Alternate I       | ocation    |
|         | alternate location of pipe from pump                                                                 |            |              |            |             |             |                     |               |                                    |                 |                     |            |
|         |                                                                                                      |            |              | of         | pipe from p | ump         |                     |               |                                    | Pipe fro        | om pump             |            |
| 9.      | Total Number of<br>Perforated Later                                                                  | •          | itions ed    | quals the  | e Numbe     | er of Per   | forations per La    | teral mu      | ıltiplied                          | by the I        | Number              | of         |
|         | 17 Per                                                                                               | f. Per L   | at. X        | 3          | 3           | lumber (    | of Perf. Lat. =     | 5             | 1                                  | Total Nu        | mber of             | Perf.      |
| 10.     | Spacing of lat                                                                                       | terals; I  | Must be      | greater    | than 1 f    | oot and     | no more than 3      | eet:          |                                    | 2.0             | ft                  |            |
| 11.     | Select Type of M                                                                                     | lanifold   | Connect      | ion (End   | d or Cen    | ter):       | End                 |               |                                    |                 |                     |            |
| 12.     | Select Lateral Di                                                                                    | iameter    | (See Tal     | ole):      |             |             | 2.00                | in            |                                    |                 |                     |            |



#### Pressure Distribution Design Worksheet



| 13. | Calculate the Square Feet per Perforation.                                 |                  | Perforation                     | n Discharge | (GPM)      |            |
|-----|----------------------------------------------------------------------------|------------------|---------------------------------|-------------|------------|------------|
|     | Recommended value is 4-11 ft2 per perforation, Does not apply to At-Grades |                  | Р                               | erforation  | Diameter   |            |
| a.  | Bed Area = Bed Width (ft) X Bed Length (ft)                                | Head (ft)        | 1/8                             | 3/16        | 7/32       | 1/4        |
|     | (a) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c                                 | 1.0ª             | 0.18                            | 0.41        | 0.56       | 0.74       |
|     | 10 ft X 50 ft = $500$ ft <sup>2</sup>                                      | 1.5              | 0.22                            | 0.51        | 0.69       | 0.9        |
|     | Course Foot now Douglasstian . Bod Area I by the Total Number of Dougla    | 2.0 <sup>b</sup> | 0.26                            | 0.59        | 0.80       | 1.04       |
| D.  | Square Foot per Perforation = Bed Area ÷ by the Total Number of Perfs      | 3.0              | 0.29                            | 0.72        | 0.98       | 1.17       |
|     | 500 $ft^2 \div$ 51 perf = 9.8 $ft^2/perf$                                  | 4.0              | 0.37                            | 0.83        | 1.13       | 1.47       |
|     | 10 - 31 peri - 7.0 it /peri                                                | 5.0°             | 0.41                            | 0.93        | 1.26       | 1.65       |
| 14. | Select Minimum Average Head: 1.0 ft                                        | 1 foot           | Dwellings wit<br>perforations   | h 3/16 inch | to 1/4 inc | h          |
| 4.5 | Calcat Danfarration Disabours based on Tables 0.74 CDM non Danf            |                  | Dwellings wit                   |             |            |            |
| 15. | Select Perforation Discharge based on Table: 0.74 GPM per Perf             | 2 feet           | Other establi<br>inch to 1/4 ir |             |            | h 3/16     |
| 16. | Flow Rate = Total Number of Perfs X Perforation Discharge.                 | 5 feet           | Other establi<br>perforations   |             |            | h 1/8 inch |
|     | 51 Perfs X 0.74 GPM per Perforation = 38 C                                 | SPM              | P                               |             |            |            |
|     | o.74   dem per renoration =   38   C                                       | 3P/W             |                                 |             |            |            |
| 17. | Volume of Liquid Per Foot of Distribution Piping (Table II): 0.170 G       | allons           | /ft                             |             |            |            |
| 18. | Volume of Distribution Piping =                                            |                  |                                 | Tab         | le II      |            |
|     | = [Number of Perforated Laterals X Length of Laterals X (Volume of         |                  | Volu                            | me of       |            | id in      |
|     | Liquid Per Foot of Distribution Piping                                     |                  |                                 | Pi          |            |            |
|     |                                                                            |                  | Pi                              | oe i        | Lia        | uid        |
|     | 3 X 48 ft X 0.170 gal/ft = 24.5 G                                          | allons           | Diam                            |             |            | Foot       |
|     | 5 / 10 / 10 / 10 Suit 2.10 0                                               | uttoris          | (inc                            | hes)        | (Gall      | ons)       |
| 19. | Minimum Delivered Volume = Volume of Distribution Piping X 4               |                  | 1                               |             | 0.0        | 45         |
|     |                                                                            |                  | 1.3                             | 25          | 0.0        | 78         |
|     | 24.5 gals X 4 = 97.9 Gallons                                               |                  | 1.                              | 5           | 0.1        | 10         |
|     |                                                                            |                  | 2                               | 2           | 0.1        | 70         |
|     |                                                                            |                  | 3                               | 3           | 0.3        | 80         |
|     |                                                                            |                  |                                 | -           | 0.6        | 61         |
|     |                                                                            |                  |                                 |             |            |            |
| omm | ents/Special Design Considerations:                                        |                  |                                 |             |            |            |
|     |                                                                            |                  |                                 |             |            |            |
|     |                                                                            |                  |                                 |             |            |            |
|     |                                                                            |                  |                                 |             |            |            |
|     |                                                                            |                  |                                 |             |            |            |
|     |                                                                            |                  |                                 |             |            |            |
|     |                                                                            |                  |                                 |             |            |            |



#### Basic Pump Selection Design Worksheet



| 1. PUMP CAPACITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | Project ID:         |                       |                       |             |                      | v 0             | 4.01.2020                           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|-----------------------|-----------------------|-------------|----------------------|-----------------|-------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                     |                       |                       | - , ,       |                      |                 |                                     |  |
| Pumping to Gravity or Pressure Distr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ssure                     | ╡                   |                       |                       |             |                      |                 |                                     |  |
| <b>A.</b> If pumping to gravity enter the gallon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | GPM (10 - 45 gpm)   |                       |                       |             |                      |                 |                                     |  |
| B. If pumping to a pressurized distributio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n system:                 |                     | 38.0                  | .0 GРМ                |             |                      |                 |                                     |  |
| C. Enter pump description:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                     |                       | Demand Dosing         |             |                      |                 |                                     |  |
| 2. HEAD REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                     |                       |                       |             |                      | Soil to<br>& po | reatment system<br>int of discharge |  |
| A. Elevation Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6 ft                      |                     |                       |                       |             |                      | <b>10</b>       | <u> </u>                            |  |
| between pump and point of discharge:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                     |                       |                       | Supply line | e length             |                 |                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                     | Inlet pipe            |                       |             | Elevation difference | ,               |                                     |  |
| B. Distribution Head Loss:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 ft                      |                     |                       |                       |             | difference           |                 |                                     |  |
| C. Additional Head Loss:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft (due to                | o special equipment | t, etc.)              |                       |             |                      | <del>)</del>    |                                     |  |
| Distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Head Loss               |                     |                       | Table I.Friction      | on Loss i   | in Plastic           | : Pipe pe       | r 100ft                             |  |
| Gravity Distribution = 0ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n Head Loss               |                     |                       | Flow Rate             | Pip         | oe Diame             | ter (inch       | es)                                 |  |
| (A. 1947-1940) (A. 1947-1941) (A. 1 |                           |                     |                       | (GPM)                 | 1           | 1.25                 | 1.5             | 2                                   |  |
| Pressure Distribution based of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | _                   | ad                    | 10                    | 9.1         | 3.1                  | 1.3             | 0.3                                 |  |
| Value on Pressure Distributio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 1174                |                       | 12                    | 12.8        | 4.3                  | 1.8             | 0.4                                 |  |
| Minimum Average Head  1ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Distributi                | ion Head L<br>5ft   | oss                   | 14                    | 17.0        | 5.7                  | 2.4             | 0.6                                 |  |
| 2ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 6ft                 |                       | 16                    | 21.8        | 7.3                  | 3.0             | 0.7                                 |  |
| 5ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 10ft                |                       | 18                    |             | 9.1                  | 3.8             | 0.9                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                     |                       | 20                    |             | 11.1                 | 4.6             | 1.1                                 |  |
| D. 1. Supply Pipe Diameter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.0 in                    |                     |                       | 25<br>30              |             | 16.8                 | 6.9<br>9.7      | 2.4                                 |  |
| b. 1. Supply Fipe Diameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 111                       |                     |                       | 35                    |             | 25.5                 | 12.9            | 3.2                                 |  |
| 2. Supply Pipe Length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 ft                     |                     |                       | 40                    |             |                      | 16.5            | 4.1                                 |  |
| E. Friction Loss in Plastic Pipe per 100f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t from Table I:           |                     |                       | 45                    |             |                      | 20.5            | 5.0                                 |  |
| E. Triction Loss in Flastic Fipe per 1001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t iroiii rabte i.         |                     |                       | 50                    |             |                      |                 | 6.1                                 |  |
| Friction Loss = 3.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ft per 100ft of p         | oipe                |                       | 55                    |             |                      |                 | 7.3                                 |  |
| - Determine Fruitzlant Bine Laurth fro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                     | !                     | 60                    |             |                      |                 | 8.6                                 |  |
| F. Determine Equivalent Pipe Length fro<br>discharge point. Estimate by adding 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                     |                       | 65                    |             |                      |                 | 10.0                                |  |
| Pipe Length X 1.25 = Equivalent Pipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | . terigen for free  | 5 (033. Supp          | 70<br>75              |             |                      |                 | 11.4<br>13.0                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                     |                       | 85                    |             |                      |                 | 16.4                                |  |
| 30 ft X 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 37                      | '.5 ft              |                       | 95                    |             |                      |                 | 20.1                                |  |
| G. Calculate Supply Friction Loss by mult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iplying <i>Friction L</i> | oss Per 100ft b     | y the <i>Equivale</i> |                       | divide by   | / 100.               |                 | 2011                                |  |
| Supply Friction Loss =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                     |                       |                       |             |                      |                 |                                     |  |
| 3.67 ft per 100ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X 37                      | '.5 ft              | ÷ 100                 | ) = 1.4               | ft          |                      |                 |                                     |  |
| H. Total Head requirement is the sum of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the <i>Elevation Dif</i>  | fference + Disti    | ribution Head         | Loss, + Additional He | ead Loss -  | + Supply F           | riction Lo      | ss                                  |  |
| 6.0 ft +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.0 ft                    | +                   | ft +                  | 1.4 f                 | t =         | 12.4                 | ft              | ļ                                   |  |
| 3. PUMP SELECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                     |                       |                       |             |                      |                 |                                     |  |
| A pump must be selected to deliver at least 38.0 GPM with at least 12.4 feet of total head.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                     |                       |                       |             |                      |                 |                                     |  |
| Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                     |                       |                       |             |                      |                 |                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                     |                       |                       |             |                      |                 |                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                     |                       |                       |             |                      |                 |                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                     |                       |                       |             |                      |                 |                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                     |                       |                       |             |                      |                 |                                     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                     |                       |                       |             |                      |                 |                                     |  |



#### Pump Tank Design Worksheet (Demand Dose)



|     | DETERM                                                                                                                                                                   | NINE TANK CAPACITY AND DI                                   | MENSIONS                 |                 |            |                             |        | Project ID: |                  |                                      |           | v 04.01.2020  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------|-----------------|------------|-----------------------------|--------|-------------|------------------|--------------------------------------|-----------|---------------|
| 1.  | A.                                                                                                                                                                       | Design Flow (Design Sum.1A,                                 | ):                       | 6               | 00         | GPD                         | С.     | Tank Use:   |                  | Dosing                               |           |               |
|     | В.                                                                                                                                                                       | Min. required pump tank ca                                  | apacity:                 | 6               | 00         | Gal                         | D.     | Recommende  | ed pump tank cap | acity:                               | 600       | Gal           |
| 2.  | A.                                                                                                                                                                       | Tank Manufacturer:                                          | bm                       |                 |            | В.                          | Tanl   | « Model:    |                  |                                      |           |               |
|     | C.                                                                                                                                                                       | Capacity from manufacture                                   | er:                      | 6               | 09         | Gallons                     |        |             | -                | lculations are b                     | •         | •             |
|     | D.                                                                                                                                                                       | Gallons per inch from manu                                  | ıfacturer:               | 13              | 3.4        | Gallons                     | ner ir | nch         | float or timer   | different tank m<br>ettings. Contact | -         |               |
|     | Б.<br>Е.                                                                                                                                                                 | ·                                                           |                          |                 | 5.0        | Gallons per inch necessary. |        |             |                  |                                      |           |               |
| _   |                                                                                                                                                                          | Liquid depth of tank from n                                 | nanuracturer:            | 40              | 5.0        | inches                      |        |             |                  |                                      |           |               |
|     | DETERMINE DOSING VOLUME                                                                                                                                                  |                                                             |                          |                 |            |                             |        |             |                  |                                      |           |               |
| ,   | 3 Calculate Volume to Cover Pump (The inlet of the pump must be at least 4-inches from the bottom of the pump tank & 2 inches of water covering the pump is recommended) |                                                             |                          |                 |            |                             |        |             |                  |                                      |           |               |
|     | (Pump a                                                                                                                                                                  | and block height + 2 inches) >                              | ( Gallons Per Inch       |                 | T          |                             |        |             |                  | 7                                    |           |               |
|     | (                                                                                                                                                                        | `L                                                          |                          | 3.4             | Gallons I  | Per Inch                    |        | =           | 188              | Gallons                              |           |               |
| 4   |                                                                                                                                                                          | ım Delivered Volume = 4 X                                   |                          |                 |            |                             |        |             |                  |                                      |           |               |
| _   |                                                                                                                                                                          | 8 of the Pressure Distributio                               | -                        |                 |            |                             | 98     | Gallons     | (Minimum dose)   |                                      | 7.3 inc   | hes/dose      |
| 5   |                                                                                                                                                                          | e <b>Maximum</b> Pumpout Volun                              |                          | 0.25            |            |                             | F0     |             |                  |                                      | 44.2      |               |
|     | Design F                                                                                                                                                                 | Flow: 600                                                   | GPD X                    | 0.25            | =          | 1                           | 50     | Gallons     | (Maximum dose)   |                                      | 11.2 inc  | hes/dose      |
| 6   | Select a                                                                                                                                                                 | pumpout volume that meet                                    | s both Minimum and Maxi  | mum:            |            | 1                           | 10     | Gallons     |                  |                                      |           | _             |
| 7   | Calculat                                                                                                                                                                 | e Doses Per Day = Design Flo                                | ow ÷ Delivered Volume    |                 |            |                             |        |             |                  | Volume of                            |           |               |
|     |                                                                                                                                                                          | 600 gpd ÷                                                   | 110                      | gal =           |            | 5                           | .45    | Doses       |                  | Pi                                   | pe        | _             |
| 8   | Calculat                                                                                                                                                                 | e Drainback:                                                |                          | 1               |            |                             |        |             |                  | Pipe                                 | Liquid    |               |
|     | A.                                                                                                                                                                       | Diameter of Supply Pipe =                                   |                          |                 |            | 2                           | inch   | es          |                  | Diameter                             | Per Foot  |               |
|     | В.                                                                                                                                                                       | Length of Supply Pipe =                                     |                          |                 | 3          | 30                          | feet   |             |                  | (inches)                             | (Gallons) | 1             |
|     |                                                                                                                                                                          |                                                             | 4.5. ( CD:               |                 | 0.         | 170                         |        |             |                  | 1.25                                 | 0.045     |               |
|     | C.                                                                                                                                                                       | Volume of Liquid Per Linea                                  | , .                      |                 |            | 170                         | Gall   | ons/ft      |                  | 1.23                                 | 0.078     | 1             |
|     | D.                                                                                                                                                                       | Drainback = Length of Supp                                  |                          |                 |            | .1                          | ار د ا |             |                  | 2                                    | 0.170     | _             |
| ۵   | Total Da                                                                                                                                                                 | 30 ft X cosing Volume = Delivered Vo                        | 0.170 gal/ft             | =               |            | . 1                         | Gall   | ONS         |                  | 3                                    | 0.380     | 1             |
| ۶.  | TOTAL DE                                                                                                                                                                 | 110 gal +                                                   | 5.1 gal =                | 1               | 15         | Gallons                     |        |             |                  | 4                                    | 0.661     | 1             |
| 10  | Minimun                                                                                                                                                                  | m Alarm Volume = Depth of a                                 |                          |                 |            | J                           |        |             |                  |                                      | Revalland |               |
| "   | .,                                                                                                                                                                       | 2 in X                                                      | 13.4 gal/in              | •               |            | 5.8                         | Gall   | ons         |                  |                                      |           |               |
|     |                                                                                                                                                                          |                                                             |                          |                 |            |                             |        |             |                  |                                      |           |               |
|     |                                                                                                                                                                          | SE FLOAT SETTINGS                                           | using Desing Volume      |                 |            |                             |        |             |                  |                                      |           |               |
| ''' |                                                                                                                                                                          | e Float Separation Distance<br>osing Volume /Gallons Per In | •                        |                 |            |                             |        |             |                  |                                      |           |               |
|     | , 5 ( ) ( )                                                                                                                                                              | 115 gal ÷                                                   | 13.4                     | gal             | /in =      | 8                           | 3.6    | Inches      |                  |                                      | _         |               |
| 12  | Measuri                                                                                                                                                                  | ng from bottom of tank:                                     |                          | ]               |            |                             |        |             |                  |                                      | T         | $\overline{}$ |
|     | A. Distance to set Pump Off Float = Pump + block height + 2 inches Inches for Dose: 8.6 in                                                                               |                                                             |                          |                 |            |                             |        |             |                  |                                      |           |               |
|     |                                                                                                                                                                          | 12 in + 2                                                   | 2 in = 14                | Inches          |            |                             |        |             | Alarm Depth      | 24.6 in T                            |           |               |
| В.  | Distance                                                                                                                                                                 | to set Pump On Float=Dista                                  | nce to Set Pump-Off Floo | ı<br>ıt + Float | : Separati | on Distai                   | nce    |             | Pump On          | 22.6 in                              | 26.8 Ga   | ı             |
|     |                                                                                                                                                                          | 14 in +                                                     | 8.6                      | in =            | 2          | 23                          | Inch   | es          | Pump Off         | 14.0 in                              | 115 Ga    | ı 』           |
| c.  | Distance                                                                                                                                                                 | to set Alarm Float = Distan                                 | ce to set Pump-On Float  | + Alarm         | Depth (2   | -3 inches                   | 5)     |             |                  |                                      | 188 Ga    |               |
|     |                                                                                                                                                                          | 23 in +                                                     | 2.0                      | in =            |            | 25                          | Inch   | es          |                  |                                      |           |               |



# Soil Observation Log

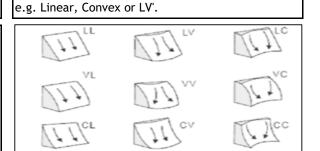
Project ID:

v 04.01.2020

| Client:                                                |                   | UCHS      |           | Location / Address: 3200 4 |            |           |                | 450th street freeport MN 56331 |                                        |               |                |            |      |
|--------------------------------------------------------|-------------------|-----------|-----------|----------------------------|------------|-----------|----------------|--------------------------------|----------------------------------------|---------------|----------------|------------|------|
| Soil parent material(s): (Check all that apply)        |                   |           |           |                            |            | e Loess   | ✓ Ti           | ill Alluv                      | ium Bedr                               |               |                |            |      |
| Landscape Position: (select one) Shoulder Slope %: 1.0 |                   |           |           |                            | Slope sh   | ape       | Linear,        | Linear                         | Elevation-relative to benchmark: 100.0 |               | 100.0          |            |      |
| Vegetation:                                            |                   | Grass     |           | Soil                       | survey ma  | p units:  |                |                                | 200B                                   |               | Limiting Layer | Elevation: | 93.1 |
| Weather Cor                                            | nditions/Time     | of Day:   |           | suni                       | ny 70      |           |                |                                |                                        | Date          | 08             | 3/29/21    |      |
| Observatio                                             | n #/Location:     | 1         |           |                            |            |           |                |                                | Obse                                   | rvation Type: |                | Pit        |      |
| Depth (in)                                             | Texture           | Rock      | Matrix (  | Color(s)                   | Mottle C   | Color(s)  | Redox Kind(    | (s)                            | Indicator(s)                           |               | Structurel     |            |      |
| . , ,                                                  |                   | Frag. %   |           |                            |            | ` '       |                | ` <u> </u>                     | ` ′                                    | Shape         | Grade          | Consist    | ence |
| 0" to 6"                                               | Sandy Loam        | <35%      | 10YR      | 2/2                        |            |           |                |                                |                                        | Granular      | Weak           | Friab      | ole  |
| 6" to 22"                                              | Sandy Loam        | <35%      | 10YR      | 10YR 4/4                   |            |           |                |                                |                                        | Blocky        | Moderate       | Friable    |      |
| 22" to 30"                                             | Sandy Loam        | <35%      | 10YR 4/4  |                            | 7.5YR !    | 5/4       | /4 51          |                                | S1                                     | Platy         | Moderate       | Firr       | n    |
|                                                        |                   |           |           |                            |            |           |                |                                |                                        |               |                |            |      |
|                                                        |                   |           |           |                            |            |           |                |                                |                                        |               |                |            |      |
|                                                        |                   |           |           |                            |            |           |                |                                |                                        |               |                |            |      |
|                                                        |                   |           |           |                            |            |           |                |                                |                                        |               |                |            |      |
|                                                        |                   |           |           |                            |            |           |                |                                |                                        |               |                |            |      |
| Comments                                               |                   |           |           |                            |            |           |                |                                |                                        |               |                |            |      |
| I hereby cert                                          | ify that I have o | completed | this work | in accor                   | dance with | all appli | cable ordinand | ces, r                         | rules and laws                         | S.            |                |            |      |
| K                                                      | ody Throener      |           |           | Ko                         | Jy Tr      | roe'      | Ner            |                                |                                        | 4018          |                | 8/29/2     | 021  |
| (Designer/Inspector) / (Signature)                     |                   |           |           |                            |            |           | )              |                                |                                        | (License #)   |                | (Dat       | e)   |

| Textu | res:             | *Sand Modifiers:          | Topsoil Indicator(s) of Saturation:                        |
|-------|------------------|---------------------------|------------------------------------------------------------|
| С     | Clay             | Co Coarse                 | T1. Wetland Vegetation                                     |
| SiC   | Silty Clay       | M Medium                  | T2. Depressional Landscape                                 |
| SC    | Sandy Clay       | F Fine                    | T3. Organic texture or organic modifiers                   |
| CL    | Clay Loam        | VF Very Fine              | T4. N 2.5/ 0 color                                         |
| SiCL  | Silty Clay Loam  |                           | T5. Redox features in topsoil                              |
| SCL   | Sandy Clay Loam  |                           | T6. Hydraulic indicators                                   |
| Si    | Silt             |                           |                                                            |
| SiL   | Silt Loam        | Subsoil II                | ndicator(s) of Saturation:                                 |
| L     | Loam             | S1. Distin                | ct gray or red redox features                              |
| SL    | Sandy Loam*      | S2. Deple                 | ted matrix (value >/=4 and chroma =2)</td                  |
| LS    | Loamy Sand*      | S3. 5Y ch                 | roma = 3</td                                               |
| S     | Sand*            | S4. 7.5 Y                 | R or redder faint redox concentrations or redox depletion  |
| Shape | :                |                           |                                                            |
|       | Granular         | The peds are approxima    | tely spherical or polyhedral and are commonly found in t   |
|       |                  | These are the small, rou  | nded peds that hang onto roots when soil is turned over.   |
|       | <u>Platy</u>     | The peds are flat and pla | ate like. They are oriented horizontally and are usually   |
|       |                  | overlapping. Platy struct | ture is commonly found in forested areas just below the    |
|       |                  | or shallow topsoil.       |                                                            |
|       | <u>Blocky</u>    | The peds are block-like   | or polyhedral, and are bounded by flat or slightly rounde  |
|       |                  | that are castings of the  | faces of surrounding peds. Blocky structure is commonly    |
|       |                  | the lower topsoil and sul | osoil.                                                     |
|       | <u>Prismatic</u> |                           | vertical faces bound the individual peds. Peds are distin  |
|       |                  | -                         | ces are typically casts or molds of adjoining peds. Prisma |
|       |                  | structure is commonly for | ound in the lower subsoil.                                 |
|       | Single Grain     | The structure found in a  | sandy soil. The individual particles are not held togethe  |
| Grade | :                |                           |                                                            |
|       | Loose            | No peds, sandy soil       |                                                            |
|       | Weak             | Poorly formed, indistinct | peds, barely observable in place                           |
|       |                  |                           |                                                            |

| Topsoil Indicator(s) of Saturation: T1. Wetland Vegetation |
|------------------------------------------------------------|
| T1. Wetland Vegetation                                     |


- T2. Depressional Landscape
- T3. Organic texture or organic modifiers

- T4. N 2.5/ 0 color
- T5. Redox features in topsoil
- T6. Hydraulic indicators

#### ) of Saturation:

- red redox features
- x (value >/=4 and chroma </=2)
- er faint redox concentrations or redox depletions

#### Landscape Position: ical or polyhedral and are commonly found in topsoil. Summit Shoulder Back/Side nmonly found in forested areas just below the leaf litter Foot Slope Iral, and are bounded by flat or slightly rounded surface Toe Slope Slope Shape: Slope shape is described in two directions: up and down slope (perpendicular to the contour), and across slope (along the horizontal contour);



V = Convex C = Concave

| blocky           | that are castings of the faces of surrounding peds. Blocky structure is commonly found in the lower topsoil and subsoil.                                                                                                        |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Prismatic</u> | Flat or slightly rounded vertical faces bound the individual peds. Peds are distinctly longer vertically, and faces are typically casts or molds of adjoining peds. Prismatic structure is commonly found in the lower subsoil. |
| ingle Grain      | The structure found in a sandy soil. The individual particles are not held together.                                                                                                                                            |
|                  |                                                                                                                                                                                                                                 |
| Loose            | No peds, sandy soil                                                                                                                                                                                                             |
| <u>Weak</u>      | Poorly formed, indistinct peds, barely observable in place                                                                                                                                                                      |
| <u>Moderate</u>  | Well formed, distinct peds, moderately durable and evident, but not distinct in                                                                                                                                                 |
|                  |                                                                                                                                                                                                                                 |

Strong Durable peds that are quite evident in un-displaced soil, adhere weakly to one another,

withstand displacement, and become separated when soil is disturbed Massive No observable aggregates, or no orderly arrangement of natural lines of weakness

| Consistence:   |                                 |
|----------------|---------------------------------|
| Loose          | Intact specimen not available   |
| <u>Friable</u> | Slight force between fingers    |
| <u>Firm</u>    | Moderate force between fingers  |
| Extremely Firm | Moderate force between hands or |
|                | slight foot pressure            |
| <u>Rigid</u>   | Foot pressure                   |

undisturbed soil



# Soil Observation Log

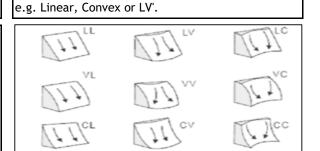
Project ID:

v 04.01.2020

| Client:                                         | JOSEPH & BARBARA ANN FUCHS |                 |             |          |             | Location / Address: 3200 450th street freeport MN 5 |                   |                |                |                                        | 31                     |       |
|-------------------------------------------------|----------------------------|-----------------|-------------|----------|-------------|-----------------------------------------------------|-------------------|----------------|----------------|----------------------------------------|------------------------|-------|
| Soil parent material(s): (Check all that apply) |                            |                 |             |          |             | e Loess T                                           | Γill              | vium Bedr      |                | ic Matter                              |                        |       |
| Landscape P                                     | osition: (selec            | t one)          | Shou        | ılder    | Slope %:    | 1.0                                                 | Slope shape       | Linear,        | , Linear       | Elevation-relative to benchmark: 100.0 |                        | 100.0 |
| Vegetation:                                     |                            | Grass           |             | Soil     | survey ma   | ap units:                                           |                   | 200B           |                | Limiting Layer                         | Elevation:             | 93.1  |
| Weather Cor                                     | nditions/Time              | of Day:         |             | sunr     | ny 70       |                                                     |                   |                | Date           | 0                                      | 8/20/21                |       |
| Observation                                     | n #/Location:              | 2               | 2           |          |             |                                                     |                   | Obse           | ervation Type: |                                        | Pit                    |       |
| Depth (in)                                      | Texture                    | Rock<br>Frag. % | Matrix (    | Color(s) | Mottle (    | Color(s)                                            | Redox Kind(s)     | Indicator(s)   | I-<br>Shape    | StructureI Grade Consistence           |                        | ence  |
| 0" to 8"                                        | Sandy Loam                 | <35%            | 10YR        | 10YR 2/2 |             |                                                     |                   |                | Granular       | Weak                                   | Consistence<br>Friable |       |
| 8"to 24"                                        | Sandy Loam                 | <35%            | 10YR        | 10YR 4/4 |             |                                                     |                   |                | Blocky         | Moderate                               | Friable                |       |
| 24" to 37"                                      | Sandy Loam                 | <35%            | 10YR        | 10YR 4/4 |             | 5/4                                                 |                   | <b>S1</b>      | Platy          | Moderate                               | Firm                   |       |
|                                                 |                            |                 |             |          |             |                                                     |                   |                |                |                                        |                        |       |
|                                                 |                            |                 |             |          |             |                                                     |                   |                |                |                                        |                        |       |
|                                                 |                            |                 |             |          |             |                                                     |                   |                |                |                                        |                        |       |
|                                                 |                            |                 |             |          |             |                                                     |                   |                |                |                                        |                        |       |
| Comments                                        | Comments                   |                 |             |          |             |                                                     |                   |                |                |                                        |                        |       |
| I hereby cert                                   | ify that I have o          | completed       | I this work | in accor | dance with  | all appli                                           | cable ordinances, | rules and laws | S.             |                                        |                        |       |
|                                                 | ody Throener               |                 |             | K bo     | dy T        | -110                                                | en er             | PN Pr 4018     |                |                                        |                        | 021   |
| (Designer/Inspector) / (Signature)              |                            |                 |             |          | (License #) |                                                     |                   |                |                | e)                                     |                        |       |

| Textu | res:             | *Sand Modifiers:          | Topsoil Indicator(s) of Saturation:                        |
|-------|------------------|---------------------------|------------------------------------------------------------|
| С     | Clay             | Co Coarse                 | T1. Wetland Vegetation                                     |
| SiC   | Silty Clay       | M Medium                  | T2. Depressional Landscape                                 |
| SC    | Sandy Clay       | F Fine                    | T3. Organic texture or organic modifiers                   |
| CL    | Clay Loam        | VF Very Fine              | T4. N 2.5/ 0 color                                         |
| SiCL  | Silty Clay Loam  |                           | T5. Redox features in topsoil                              |
| SCL   | Sandy Clay Loam  |                           | T6. Hydraulic indicators                                   |
| Si    | Silt             |                           |                                                            |
| SiL   | Silt Loam        | Subsoil II                | ndicator(s) of Saturation:                                 |
| L     | Loam             | S1. Distin                | ct gray or red redox features                              |
| SL    | Sandy Loam*      | S2. Deple                 | ted matrix (value >/=4 and chroma =2)</td                  |
| LS    | Loamy Sand*      | S3. 5Y ch                 | roma = 3</td                                               |
| S     | Sand*            | S4. 7.5 Y                 | R or redder faint redox concentrations or redox depletion  |
| Shape | :                |                           |                                                            |
|       | Granular         | The peds are approxima    | tely spherical or polyhedral and are commonly found in t   |
|       |                  | These are the small, rou  | nded peds that hang onto roots when soil is turned over.   |
|       | <u>Platy</u>     | The peds are flat and pla | ate like. They are oriented horizontally and are usually   |
|       |                  | overlapping. Platy struct | ture is commonly found in forested areas just below the    |
|       |                  | or shallow topsoil.       |                                                            |
|       | <u>Blocky</u>    | The peds are block-like   | or polyhedral, and are bounded by flat or slightly rounde  |
|       |                  | that are castings of the  | faces of surrounding peds. Blocky structure is commonly    |
|       |                  | the lower topsoil and sul | osoil.                                                     |
|       | <u>Prismatic</u> |                           | vertical faces bound the individual peds. Peds are distin  |
|       |                  | -                         | ces are typically casts or molds of adjoining peds. Prisma |
|       |                  | structure is commonly for | ound in the lower subsoil.                                 |
|       | Single Grain     | The structure found in a  | sandy soil. The individual particles are not held togethe  |
| Grade | :                |                           |                                                            |
|       | Loose            | No peds, sandy soil       |                                                            |
|       | Weak             | Poorly formed, indistinct | peds, barely observable in place                           |
|       |                  |                           |                                                            |

| Topsoil Indicator(s) of Saturation: T1. Wetland Vegetation |
|------------------------------------------------------------|
| T1. Wetland Vegetation                                     |


- T2. Depressional Landscape
- T3. Organic texture or organic modifiers

- T4. N 2.5/ 0 color
- T5. Redox features in topsoil
- T6. Hydraulic indicators

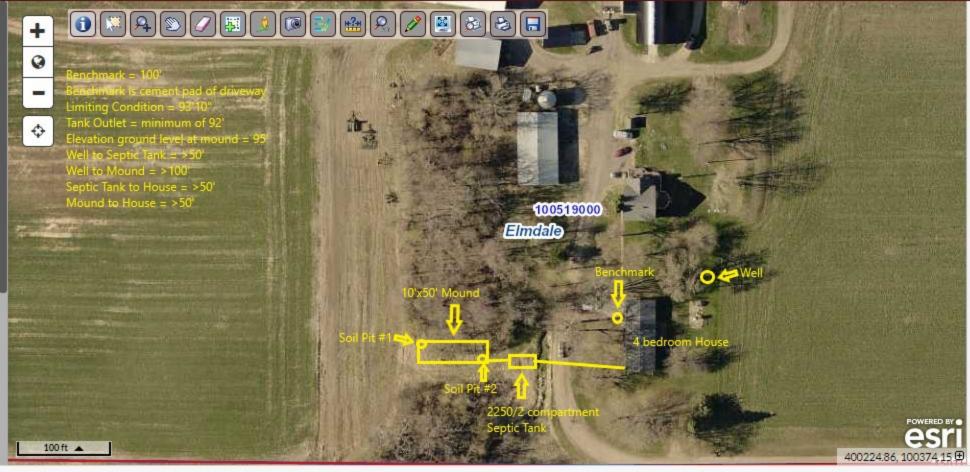
#### ) of Saturation:

- red redox features
- x (value >/=4 and chroma </=2)
- er faint redox concentrations or redox depletions

#### Landscape Position: ical or polyhedral and are commonly found in topsoil. Summit Shoulder Back/Side nmonly found in forested areas just below the leaf litter Foot Slope Iral, and are bounded by flat or slightly rounded surface Toe Slope Slope Shape: Slope shape is described in two directions: up and down slope (perpendicular to the contour), and across slope (along the horizontal contour);



V = Convex C = Concave


| blocky           | that are castings of the faces of surrounding peds. Blocky structure is commonly found in the lower topsoil and subsoil.                                                                                                        |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Prismatic</u> | Flat or slightly rounded vertical faces bound the individual peds. Peds are distinctly longer vertically, and faces are typically casts or molds of adjoining peds. Prismatic structure is commonly found in the lower subsoil. |
| ingle Grain      | The structure found in a sandy soil. The individual particles are not held together.                                                                                                                                            |
|                  |                                                                                                                                                                                                                                 |
| Loose            | No peds, sandy soil                                                                                                                                                                                                             |
| <u>Weak</u>      | Poorly formed, indistinct peds, barely observable in place                                                                                                                                                                      |
| <u>Moderate</u>  | Well formed, distinct peds, moderately durable and evident, but not distinct in                                                                                                                                                 |
|                  |                                                                                                                                                                                                                                 |

Strong Durable peds that are quite evident in un-displaced soil, adhere weakly to one another,

withstand displacement, and become separated when soil is disturbed Massive No observable aggregates, or no orderly arrangement of natural lines of weakness

| Consistence:   |                                 |
|----------------|---------------------------------|
| Loose          | Intact specimen not available   |
| <u>Friable</u> | Slight force between fingers    |
| <u>Firm</u>    | Moderate force between fingers  |
| Extremely Firm | Moderate force between hands or |
|                | slight foot pressure            |
| <u>Rigid</u>   | Foot pressure                   |

undisturbed soil

